2018 DRINKING WATER QUALITY REPORT

PUBLIC WATER SYSTEM I.D. CO0121150

This required report is prepared in accordance with federal and state regulations of the Safe Drinking Water Act.

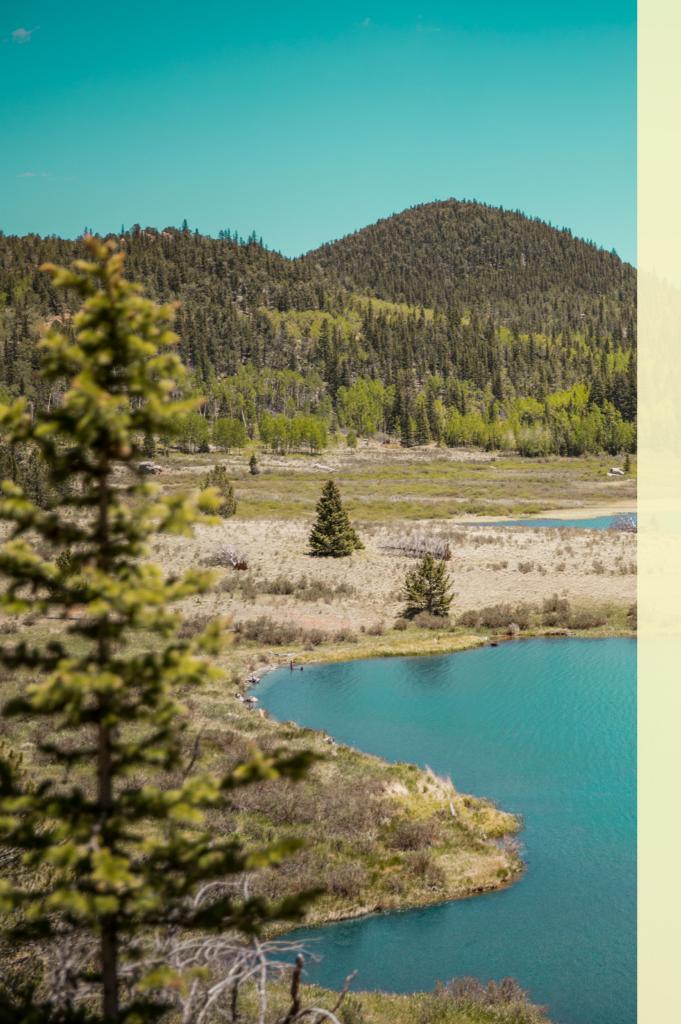

Esta información acerca de su agua potable es importante. Si usted no puede leer esto en ingles, por favor pidale a alquien que le traduzca esta importante información o llame a Cuidado al Cliente al numero 719-448-4800.

TABLE OF CONTENTS

- 3 INTRODUCTION
- 4 WATER SOURCES
- 5 COLORADO SOURCE WATER ASSESSMENT AND PROTECTION
- 6 WATER CONTAMINANTS
- 7 IMMUNOCOMPROMISED PERSONS ADVISORY
- 8 LEAD IN DRINKING WATER
- 8 FLUORIDE IN DRINKING WATER
- 9 **CRYPTOSPORIDIUM**
- 10 UNREGULATED CONTAMINANT MONITORING REGULATION
- 11 TERMS, ABBREVIATIONS & SYMBOLS
- 12 DATA PRESENTED IN THE WATER QUALITY REPORT
- 13-17 **DETECTED CONTAMINANTS TABLES**
 - 18 CUSTOMERS HAVE A VOICE IN DECISIONS
 - 18 **GENERAL INFORMATION**

INTRODUCTION

Providing safe and reliable drinking water to our customers is our top priority. Thanks to years of planning and foresight by our water planners, we are fortunate to have access to first-use, high mountain snowmelt for our community's drinking water. Although our source water is of high quality, it still takes the hard work and dedication of our employees to deliver that water to you.

Each year, thousands of samples are collected at our reservoirs and streams, at water treatment facilities and throughout the distribution system. Those samples are analyzed for numerous water quality parameters to ensure that safe and reliable water is served to our customers. This analysis is not only performed to meet regulatory requirements, but also for research and operational improvements. For example, we're currently implementing upgrades at the Phillip H. Tollefson Water Treatment Plant (formerly the Mesa Water Treatment Plant), our oldest operating water treatment plant. These upgrades will position the plant to meet expanding regulations and quality expectations well into the future.

We are proud to say that in 2017 our drinking water met or surpassed all state and federal drinking water standards. This report is designed to provide our customers information regarding their drinking water. If you have questions about this report or the quality of your water, please contact us at 719-668-4560.

WATER SOURCES

Your water is blended from multiple sources, including surface water, ground water and purchased water. Your water source may vary throughout the year.

MOUNTAIN WATER SOURCES

With no major water source nearby, much of our raw water collection system originates from nearly 200 miles away, near Aspen, Leadville and Breckenridge. Almost 75 percent of our water originates from mountain streams. Water from these streams is collected and stored in numerous reservoirs along the Continental Divide. Collection systems in this area consist of the Homestake, Fryingpan-Arkansas, Twin Lakes and Blue River systems.

The majority of this raw water is transferred to our city through pipelines that help protect it from contamination, such as herbicides, pesticides, heavy metals and other chemicals. After the long journey, water is stored locally at Rampart Reservoir and the Catamount Reservoirs on Pikes Peak.

For more source water information, click https://www.csu.org/pages/watershed-r.aspx.

LOCAL SURFACE SOURCES

To supplement the water received from the mountain sources, we are able to divert water from local surface water collection systems including:

- North and South Slopes of Pikes Peak Catamount Reservoirs, Crystal Reservoir, South Slope Reservoirs and tributaries
- North and South Cheyenne Creeks
- Fountain Creek
- · Monument Creek Pikeview Reservoir
- Northfield Watershed Rampart and Northfield Reservoirs
- Pueblo Reservoir

LOCAL GROUND WATER SOURCES

We previously pumped water from wells drilled into two different aquifers. We have two inactive wells on the Denver aquifer (500-700 feet deep) and two wells on the Arapahoe aquifer (900-1,000 feet deep). These wells were deactivated in July 2015.

PURCHASED WATER SOURCE

Fountain Valley Authority or FVA (PWSID#CO0121300) receives water from the Fryingpan-Arkansas Project – a system of pipes and tunnels that collects water in the Hunter-Fryingpan Wilderness Area near Aspen. Waters collected from this system are diverted to the Arkansas River, near Buena Vista, and then flow about 150 miles downstream to Pueblo Reservoir. From there, the water travels through a pipeline to a water treatment plant before being delivered to Colorado Springs.

All water sources are treated at one of our treatment plants (or in the case of FVA water at FVA's treatment plant) prior to entering our drinking water distribution system; an intricate system of tanks, pumps and pipes that ultimately deliver water to your home or business.

COLORADO SOURCE WATER ASSESSMENT AND PROTECTION

The Colorado Department of Public Health and Environment has provided us with a Source Water Assessment Report for our water supply. For general information or to obtain a copy of the report, please visit https://www.colorado.gov/cdphe/ccr, or contact Laboratory Services at 719-668-4560.

The Source Water Assessment Report provides a screening-level evaluation of potential contamination that could occur. It does not mean that the contamination has occurred or will occur. We can use this information to evaluate the need to improve our current water treatment capabilities and prepare for future contamination threats. This can help us ensure that quality water is delivered to your homes and businesses. In addition, the source water assessment results provide a starting point for developing a source water protection plan. Potential sources of contamination in our source water area are listed below.

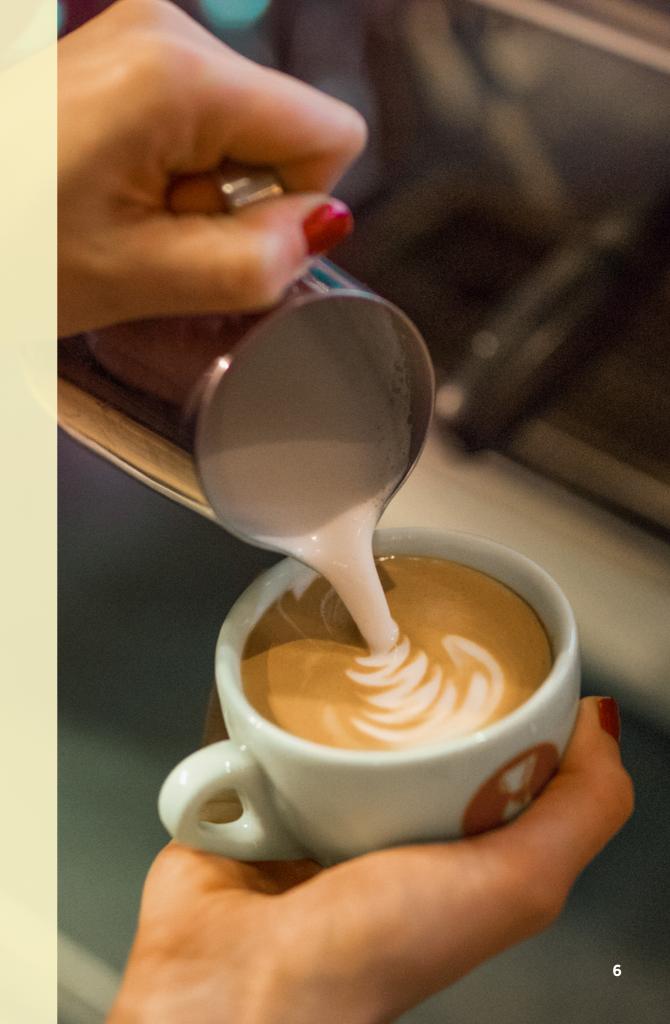
Potential sources of contamination to our source water areas may come from:

- EPA Superfund Sites
- EPA Abandoned
 Contaminated Sites
- EPA Hazardous Waste Generators
- EPA Chemical Inventory/Storage Sites
- EPA Toxic Release Inventory Sites
- Permitted Wastewater
 Discharge Sites

- Aboveground, Underground and Leaking Storage Tank Sites
- Solid Waste Sites
- Existing/Abandoned Mine Sites
- Concentrated Animal Feeding Operations
- Other Facilities
- Commercial/Industrial Transportation
- High- and Low-Intensity Residential

- Urban Recreational Grasses
- Quarries/Strip Mines/Gravel Pits
- Agricultural Land (row crops, small grain, pasture/hay, orchards/vineyards, fallow and other)
- Forest
- Septic Systems
- Oil/Gas Wells
- Road Miles

The results of the source water assessment are not a reflection of our treated water quality or the water you receive, but rather a rating of the susceptibility of source water contamination under the guidelines of the Colorado SWAP program.


WATER CONTAMINANTS

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operation and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally
 occurring or result from urban stormwater runoff, industrial or domestic
 wastewater discharges, oil and gas production, mining or farming.
- Pesticides and herbicides that may come from a variety of sources, such as agriculture, urban stormwater runoff and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and also may come from gas stations, urban stormwater runoff and septic systems.
- Radioactive contaminants that can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the Colorado Department of Public Health and Environment prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration regulations establish limits for contaminants in bottled water that must provide the same protection for public health.

IMMUNOCOMPROMISED PERSONS ADVISORY

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (1-800-426-4791) or by visiting http://water.epa.gov/drink/contaminants.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV-AIDS or other immune system disorders, some elderly and infants can be particularly at risk of infections. These people should seek advice about drinking water from their health care providers.

LEAD IN DRINKING WATER

If present, elevated levels of lead can cause serious health problems (especially for pregnant women and young children). It is possible that lead levels at your home may be higher than other homes in the community as a result of materials used in your home's plumbing. If you are concerned about lead in your water, you may wish to have your water tested. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. Additional information on lead in drinking water, testing methods and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791), or at http://www.epa.gov/safewater/lead.

FLUORIDE IN DRINKING WATER

Fluoride is a compound found naturally in many places, including soil, food, plants, animals and the human body. It is also found naturally at varying levels in all Colorado Springs' water sources. We do not add additional fluoride to your drinking water. Any fluoride in the drinking water comes naturally from our source water. For more fluoride information, click https://www.csu.org/pages/water-quality-r.aspx.

CRYPTOSPORIDIUM

Cryptosporidium is a microbial pathogen found in surface water throughout the United States. Although filtration removes cryptosporidium, the most commonly used filtration methods cannot guarantee 100 percent removal. No cryptosporidia were detected in our source water in 2017. Ingestion of cryptosporidium may cause cryptosporidiosis, an abdominal infection. Symptoms of infection include nausea, diarrhea and abdominal cramps. Most healthy individuals can overcome the disease within a few weeks. However, immunocompromised people are at greater risk of developing the life-threatening illness. We encourage immunocompromised individuals to consult their doctor regarding appropriate precautions to take to avoid infection. Cryptosporidium must be ingested to cause disease, and it may be spread through means other than drinking water.

For more information about contaminants and potential health effects, or to receive a copy of the U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by cryptosporidium and microbiological contaminants, call the EPA Safe Drinking Water Hotline at 1-800-426-4791.

UNREGULATED CONTAMINANT MONITORING REGULATION (UCMR)

The 1996 amendments to the Safe Drinking Water Act required that EPA establish criteria for a program to monitor unregulated contaminants and to identify no more than 30 unregulated contaminants to be monitored every five years.

Unregulated contaminants are those contaminants that do not have a drinking water standard (maximum contaminant level) established by EPA. The purpose of the UCMR is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

The third round of the UCMR required monitoring for 28 contaminants. Colorado Springs Utilities was required to monitor for these contaminants for four quarters, starting in July 2013. The results for any contaminants detected, to date, are listed below.

CONTAMINANT	AVERAGE LEVEL DETECTED (RANGE)	UNITS	SAMPLE DATES	POSSIBLE SOURCE(S) OF CONTAMINATION
Chlorate	3.7 (ND - 63)	ppb	Jul, Oct 2013 & Jan, Apr, May 2014	Powerful oxidizer once used in pyrotechnics. Can be chemically bound to make metal salts.
Chromium-6	0.001 (ND - 0.041)		Jul, Oct 2013 & Jan, Apr, May 2014	Used for chrome plating, dyes and pigments, leather tanning, and wood preserving.
Molybdenum	0.42 (ND - 1.4)	ppb	Jul, Oct 2013 & Jan, Apr, May 2014	Used to make steel alloys, and in high-pressure and high-temperature applications, as pigments and catalysts.
Strontium	79.4 (46 - 110)	ppb	Jul, Oct 2013 & Jan, Apr, May 2014	Used in making ceramics and glass products, pyrotechnics, paint pigments, fluorescent lights, and medicines.
Vanadium	0.02 (ND - 0.31)	ppb	Jul, Oct 2013 & Jan, Apr, May 2014	Used to make metal alloys. Used in making rubber, plastics, ceramics, and other chemicals.

DEFINITIONS:

- Maximum Contaminant Level (MCL) The level of a contaminant that is allowed in drinking water.
- Non-detect (ND) Analytical result is below the reportable level for the analysis.
- Parts per billion (ppb) As a reference, one part per billion is the equivalent of one minute in 2,000 years or one penny in \$10,000,000. One ppb can also be referred to as one microgram per liter (µg/L).

TERMS, ABBREVIATIONS & SYMBOLS

- MAXIMUM CONTAMINANT LEVEL (MCL) The highest level of a contaminant allowed in drinking water.
- TREATMENT TECHNIQUE (TT) A required process intended to reduce the level of a contaminant in drinking water.
- HEALTH-BASED A violation of either an MCL or TT.
- NON-HEALTH-BASED A violation that is not an MCL or TT.
- **ACTION LEVEL (AL)** The concentration of a contaminant which, if exceeded, triggers treatment and other regulatory requirements.
- MAXIMUM RESIDUAL DISINFECTANT LEVEL (MRDL) The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- MAXIMUM CONTAMINANT LEVEL GOAL (MCLG) The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- MAXIMUM RESIDUAL DISINFECTANT LEVEL GOAL (MRDLG) The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- VIOLATION (NO ABBREVIATION) Failure to meet a Colorado Primary Drinking Water Regulation.
- FORMAL ENFORCEMENT ACTION (NO ABBREVIATION) Escalated action taken by the State (due to the risk to public health, or number or severity of violations) to bring a non-compliant water system back into compliance.
- VARIANCE AND EXEMPTIONS (V/E) Department permission not to meet an MCL or treatment technique under certain conditions.
- GROSS ALPHA (NO ABBREVIATION) Gross alpha particle activity compliance value. It includes radium-226, but excludes radon-222 and uranium.
- PICOCURIES PER LITER (pCi/L) Measure of the radioactivity in water.

- NEPHELOMETRIC TURBIDITY UNIT (NTU) Measure of the clarity or cloudiness of water. Turbidity in excess of 5 NTU is just noticeable to the typical person.
- COMPLIANCE VALUE (NO ABBREVIATION) Single or calculated value used to determine if regulatory contaminant level (e.g., MCL) is met. Examples of calculated values are the 90th Percentile, Running Annual Average (RAA) and Locational Running Annual Average (LRAA).
- AVERAGE (x-bar) Typical value.
- RANGE (R) Lowest value to the highest value.
- SAMPLE SIZE (n) Number or count of values (i.e., number of water samples collected).
- PARTS PER MILLION = MILLIGRAMS PER LITER (ppm = mg/L) As a reference, one part per million is the equivalent of one minute in two years or a single penny in \$10,000.
- PARTS PER BILLION = MICROGRAMS PER LITER (ppb = mg/L) As a reference, one part per billion is the equivalent of one minute in 2,000 years, or a single penny in \$10,000,000.
- NOT APPLICABLE (N/A) Does not apply or not available.
- LEVEL 1 ASSESSMENT A study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
- LEVEL 2 ASSESSMENT A very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

DATA PRESENTED IN THE WATER QUALITY REPORT

We are required to monitor for certain contaminants less than once a year because the concentration of the contaminants is not expected to vary significantly from year to year, or the drinking water system is not considered vulnerable to this type of contamination. Some of the data, though representative, may be more than one year old.

We monitor for contaminants at a variety of locations. These locations are determined by the regulations concerning specific contaminants. Why are different locations specified? The different locations address water chemistry considerations, water system quality and integrity considerations, and special circumstances that impact a contaminant's level in drinking water.

We, along with our purchased water system (FVA), have been issued waivers for asbestos, cyanide, dioxin, glyphosate, nitrite and all unregulated inorganic contaminants. The tables on the following pages show the combined results of our monitoring for six water treatment plants for the period of January 1 through December 31, 2017, unless otherwise noted.

DETECTED CONTAMINANTS TABLES

COLORADO SPRINGS UTILITIES (PWSID CO0121150)

INORGANIC CONTAMINANTS

MONITORED AT THE TREATMENT PLANT (ENTRY POINT TO THE DISTRIBUTION SYSTEM)

CONTAMINANT	MCL	MCLG	UNITS	RANGE	AVERAGE	MCL VIOLATION	SAMPLE DATES	POSSIBLE SOURCE(S) OF CONTAMINATION
Barium	2	2	ppm	0.01 - 0.06	0.03	No	Jan, Apr 2017	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Fluoride	4	4	ppm	0.15 - 1.44	0.57	No	Jan, Apr 2017	Erosion of natural deposits; discharge from fertilizer and aluminum factories
Nitrate (as Nitrogen)	10	10	ppm	0 - 0.32	0.12	No	Jan, Apr 2017	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Selenium	50	50	ppb	0 - 5.4	1.55	No	Jan, Apr 2017	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
Sodium	N/A	N/A	ppm	5.24 - 22.7	12.0	No	Jan, Apr 2017	Erosion of natural deposits

ORGANIC CONTAMINANTS

MONITORED AT THE TREATMENT PLANT (ENTRY POINT TO THE DISTRIBUTION SYSTEM)

CONTAMINANT	MCL	MCLG	UNITS	AVERAGE	RANGE DETECTED	MCL VIOLATION	SAMPLE DATES	POSSIBLE SOURCE(S) OF CONTAMINATION
Di(2-ethylhexyl) phthalate	6	0	ppb	0.11	0 - 0.67	No	Jan, Apr, Jul, Nov 2017	Discharge from rubber and chemical factories
Hexachlorocyclopentadiene	50	50	dqq	0.02	0 - 0.07	No	Jan, Apr, Jul, Nov 2017	Discharge from chemical factories
Ethylbenzene	700	700	ppb	1.05	0 - 6.78	No	Apr, Sep, Oct 2017	Discharge from petroleum refineries
Xylenes	10,000	10,000	ppb	10.44	0 - 63.4	No	Apr, Sep, Oct 2017	Discharge from petroleum factories; discharge from chemical factories

RADIONUCLIDES

MONITORED AT THE TREATMENT PLANT (ENTRY POINT TO THE DISTRIBUTION SYSTEM)

CONTAMINANT	MCL	MCLG	UNITS	AVERAGE	RANGE LOW-HIGH	MCL VIOLATION	SAMPLE DATES	POSSIBLE SOURCE(S) OF CONTAMINATION
Combined Radium	5	0	pCi/L	0.3	0.3 - 0.3	No	Jan 2017	Erosion of natural deposits
Combined Uranium	30	0	dqq	3.6	3.6 - 3.6	No	Jan 2017	Erosion of natural deposits

TURBIDITY

CONTINUOUSLY MONITORED AT THE TREATMENT PLANT (ENTRY POINT TO THE DISTRIBUTION SYSTEM)

CONTAMINANT	TT REQUIREMENT	LEVEL DETECTED	TT VIOLATION	SAMPLE DATES	POSSIBLE SOURCE(S) OF CONTAMINATION		
Turbidity	Maximum 1 NTU for any single measurement	Highest single measurement: 0.32 NTU	No	Jun 2017	Soil runoff		
Turbidity	In any month, at least 95% of samples must be less than 0.3 NTU	Lowest monthly percentage of samples meeting TT requirement: 100%	No	Dec 2017	Soil runoff		

DISINFECTANTS

CONTINUOUSLY MONITORED AT THE TREATMENT PLANT (ENTRY POINT TO THE DISTRIBUTION SYSTEM)

CONTAMINANT	MRDL/TT REQUIREMENT	UNITS	LEVEL DETECTED	MRDL/TT VIOLATION	SAMPLE DATES	POSSIBLE SOURCE(S) OF CONTAMINATION
Chlorine	TT = no more than 4 hours with a sample below 0.2 ppm	ppm	O samples above or below the level	No	Jan - Dec 2017	Water additive used to control microbes

TOTAL ORGANIC CARBON (DISINFECTION BY-PRODUCTS PRECURSOR) REMOVAL RATIO AND FINISHED WATER

MONITORED AT THE TREATMENT PLANT (ENTRY POINT TO THE DISTRIBUTION SYSTEM)

	CONTAMINANT	MCL	MCLG	UNITS	AVERAGE	RANGE LOW-HIGH	MCL VIOLATION	SAMPLE DATES	POSSIBLE SOURCE(S) OF CONTAMINATION
То	otal Organic Carbon (TOC)	TT minimum ratio = 1.00	N/A	N/A	1.71	1 - 2.65	No	Monthly - Running Annual Average	Naturally present in the environment

DISINFECTION BY-PRODUCTS

MONITORED IN THE DISTRIBUTION SYSTEM

CONTAMINANT	MCL	MCLG	UNITS	AVERAGE	RANGE LOW-HIGH	MCL VIOLATION	HIGHEST COMPLIANCE VALUE	SAMPLE DATES	POSSIBLE SOURCE(S) OF CONTAMINATION
Total Haloacetic Acids (HAA5)	60	N/A	ppb	39.54	19.2 - 59.0	No	50.7	Jan, Apr, Jul, Oct 2017	By-product of drinking water disinfection
Total Trihalomethanes (TTHM)	80	N/A	ppb	45.09	29.2 - 64.4	No	60.7	Jan, Apr, Jul, Oct 2017	By-product of drinking water disinfection

LONG TERM 2 ENHANCED SURFACE WATER TREATMENT RULE MONITORING

MONITORED RAW SOURCE WATER BEFORE IT ENTERS THE TREATMENT PLANT

CONTAMINANT	UNITS	RANGE DETECTED	MCL	SAMPLE DATES	POSSIBLE SOURCE(S) OF CONTAMINATION
Cryptosporidium	Oocysts	0	0	Jan - Dec 2017	Naturally occur in the environment
E. coli	MPN	0-49	N/A	Jan - Dec 2017	Naturally occur in the environment

DISINFECTANTS IN THE DISTRIBUTION SYSTEM

CONTAMINANT	MRDL/TT	LOWEST TT PERCENTAGE	ANNUAL AVERAGE	UNITS	TT VIOLATION	SAMPLE DATES	POSSIBLE SOURCE(S) OF CONTAMINATION
Chlorine	MRDL = 4 ppm TT = at least 95% of samples per month must be at least 0.2 ppm	98% Jul	0.51	ppm	No	2017	Drinking water disinfectant used to control microbes

LEAD AND COPPER

MONITORED IN THE DISTRIBUTION SYSTEM

CONTAMINANT	AL AT THE 90TH PERCENTILE	MCLG	UNITS	90TH PERCENTILE	SAMPLE SIZE	SAMPLE SITES ABOVE AL	AL EXCEEDANCE	SAMPLE DATES	POSSIBLE SOURCE(S) OF CONTAMINATION
Copper	1.3	1.3	ppm	0.18	105	0	No	Jan – Jun 2017	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Lead	15	0	ppb	4.7	105	0	No	Jan – Jun 2017	Corrosion of household plumbing systems; erosion of natural deposits
Copper	1.3	1.3	ppm	0.20	103	0	No	Jul - Dec 2017	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Lead	15	0	ppb	3.8	102	0	No	Jul - Dec 2017	Corrosion of household plumbing systems; erosion of natural deposits

CONTAMINANTS WITH SECONDARY MCL REQUIREMENTS¹

MONITORED AT THE TREATMENT PLANT (ENTRY POINT TO THE DISTRIBUTION SYSTEM)

CONTAMINANT	SMCL	UNITS	AVERAGE LEVEL DETECTED (RANGE)	SAMPLE DATES	POSSIBLE SOURCE(S) OF CONTAMINATION
Aluminum	0.050 - 0.2	ppm	0.07 (0 - 0.25)	Jan - Dec 2017	Erosion of natural deposits, water treatment chemical
Chloride	250	ppm	6.1 (1.5 - 11.4)	Jan - Dec 2017	Erosion of natural deposits
Iron	0.3	ppm	0.010 (0 - 0.010)	Jan - Dec 2017	Erosion of natural deposits, leaching from plumbing materials
Sulfate	250	ppm	38.35 (8.31 - 123)	Jan - Dec 2017	Erosion of natural deposits
Zinc	5,000	ppb	3.7 (0 - 3.7)	Jan, Apr 2017	Leaching from plumbing materials

¹Secondary MCL (SMCL) is not enforceable but intended as guidelines. These contaminants in drinking water may affect the aesthetic qualities.

CUSTOMERS HAVE A VOICE IN DECISIONS

We encourage customer participation in decisions affecting our drinking water.

- Utilities Board our governing body meets the Wednesday between City Council meetings, 1 p.m. at the Plaza of the Rockies, South Tower, 121 S. Tejon St., fifth floor.
- Call 719-448-4800 or click https://www.csu.org/pages/ub-r.aspx.

GENERAL INFORMATION

- To request a printed copy of this report or for questions, call 719-668-4560.
- For more water quality information or to access past Drinking Water Quality Reports, click https://www.csu.org/pages/water-quality-r.aspx.