

ANNUAL GROUNDWATER MONITORING REPORT FOR 2022

COLORADO SPRINGS UTILITIES' CLEAR SPRING RANCH Coal Combustion Residuals Landfill El Paso County, Colorado

January 31, 2023

Prepared For: 40 CFR Part 257.90(e) and Colorado Department of Public Health and Environment Hazardous Materials and Waste Management Division 4300 Cherry Creek Drive South Denver, Colorado 80246-1530

> Attention: Ms. Ashley Lawrence Ms. Jill Parisi

Prepared By: Colorado Springs Utilities Environmental Services Department Technical Services Section

Facility Environmental Activities Contact

TABLE OF CONTENTS

1.0	EXEC	CUTIVE SUMMARY	1
2.0	INTR	ODUCTION	1
	2.1	Groundwater Classification and Management	1
3.0	GRO	UNDWATER FLOW ANALYSIS AND GEOLOGIC PROFILE	2
4.0	GRO	UNDWATER QUALITY SAMPLING AND ANALYSIS	2
	4.1	Detection Monitoring	3
	4.2	Assessment Monitoring	3
	4.3	Quality Assurance / Quality Control	3
	4.4	Monitoring Well Installation, Repair, and Abandonment	
5.0	STAT	ISTICAL ANALYSIS RESULTS SUMMARY	4
6.0	GRO	UNDWATER PROTECTION STANDARDS (GWPS)	4
7.0	SUMI	MARY OF FINDINGS	6
	7.1	Risk	6
	7.2	Activities for 2023	7
8.0	REFE	ERENCES	7

- **APPENDIX A** Vicinity Map and Groundwater Elevation Contours
- APPENDIX B Groundwater Laboratory Analytical Results and Groundwater Depths / Elevations
- APPENDIX C Laboratory Analytical Reports
- APPENDIX D Statistical Analysis Report
- APPENDIX E Alternative Source Demonstration
- APPENDIX F Alternative Source Demonstration Additional Information

1.0 EXECUTIVE SUMMARY

During the 2022 reporting period, Colorado Springs Utilities' (Utilities') Clear Spring Ranch (CSR) Coal Combustion Residuals (CCR) Landfill was operating pursuant to the assessment monitoring program set forth in 40 CFR §257.95. The landfill entered assessment monitoring in 2018.

During 2022, the following monitoring wells were determined to have a statistically significant increase over background for the following EPA CCR Rule Appendix III constituents pursuant to 40 CFR §257.94(e):

- Boron within monitoring wells SC-11 and SC-12
- ▼ Fluoride within monitoring wells SC-12 and SC-13

As previously reported in the Annual Groundwater Monitoring Report for 2021, EPA CCR Rule Appendix IV constituent selenium was measured in downgradient well SC-10 at a statistically significant level exceeding the Groundwater Protection Standards (GWPS) during the second semi-annual (2021) sampling event. Utilities completed an Alternate Source Demonstration in April 2022, in accordance with §257.95(g)(3)(ii). During 2022, no EPA CCR Rule Appendix IV constituents were measured at a statistically significant level significant level exceeding the GWPS.

2.0 INTRODUCTION

This annual report summarizes the groundwater monitoring activities performed during 2022 in association with the CCR Landfill at Utilities' CSR. The landfill is located west-southwest of the intersection of Interstate 25 and Ray Nixon Road (Exit 125) in El Paso County, Colorado. CCR from Utilities' Ray Nixon Power Plant is placed in the landfill. CCR from Utilities' Martin Drake Power Plant was being placed in the landfill; however, the Martin Drake Power Plant ceased operation of its coal-burning units in Fall 2021 and CCR is no longer being generated at this power plant.

The CCR Landfill is regulated by the U.S. Environmental Protection Agency (EPA), the Colorado Department of Public Health & Environment (CDPHE), and El Paso County. The land-use is authorized via a Certificate of Designation (CD) obtained from El Paso County (CD #004-001).

The groundwater monitoring activities were performed for compliance with the EPA's Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments (40 CFR §257.50 through §257.107) (EPA CCR Rule) and the CDPHE's Regulations Pertaining to Solid Waste Sites and Facilities (6 CCR 1007-2, Part 1, Section 2.2 - Ground Water Monitoring).

The groundwater monitoring activities were conducted in general accordance with the Coal Combustion Residuals Landfill Groundwater Detection Monitoring Plan (AECOM 2017). This Monitoring Plan was approved by the CDPHE on November 14, 2017 (CDPHE 2017).

This report fulfills the EPA's, CDPHE's, and El Paso County's annual reporting requirements.

2.1 Groundwater Classification and Management

From its inception in the late 1970's, the CCR Landfill has been designed and operated to protect the Fountain Creek Alluvial Aquifer, which is the closest aquifer to the site used for drinking water purposes. The CCR Landfill is located approximately 0.5 miles upgradient of a Retention Dam, described below. The

Fountain Creek Alluvial Aquifer is located approximately 0.5 miles downgradient of the Retention Dam. There are no drinking water or agricultural wells within the CD Area, in which the CCR Landfill is located. To protect the Fountain Creek Alluvial Aquifer, groundwater associated with the CCR Landfill is managed via a Retention Dam and pump back system. The Retention Dam was constructed downgradient of the CCR Landfill in 1978 to inhibit the off-site migration of surface water and groundwater. The dam has a bentonite core and is keyed into the underlying Pierre Shale bedrock. To improve the dam's performance, in the 1990s, Utilities installed a bentonite barrier wall along the upgradient toe of the dam, and a french drain and pump back system downgradient of the dam. The french drain captures water seepage through the dam. The drain extends for approximately 525 feet along the southern portion of the dam. The french drain's collection trench is gravel filled and slopes towards a sump located at the northern end of the trench. An extraction well and pump remove water collected in the sump and pump it back to the upgradient Retention Dam pond. The dam is registered with and inspected by the Office of the State Engineer - Division of Water Resources - Dam Safety Branch (Dam I.D. #100401). A site plan is presented in Appendix A.

3.0 GROUNDWATER FLOW ANALYSIS AND GEOLOGIC PROFILE

The CCR Landfill is located within a small, west-east trending topographic depression that is underlain with, and bounded to the north and south, by Pierre Shale. An investigation of CSR involving laboratory hydraulic conductivity tests on cores of un-weathered Pierre Shale indicated that the Pierre Shale is essentially impermeable (Haley & Aldrich 1994). The surficial geology consists of approximately 4 to 50 feet of alluvial sediments deposited on top of the Pierre Shale (Layne Western 1977).

The alluvial sediments overlying the Pierre Shale formation include the Piney Creek, Broadway, Louviers, and Slocum Alluviums. The alluvium is concentrated in low areas and drainages with Pierre Shale generally present near the ground surface ridges. The groundwater bearing matrix generally consists of silt, sand, clay, gravel, sandy clay, silty sand, sand with silt, clayey gravel, and sand with clay. Most of this alluvium is poorly-sorted and fine-grained with silt-sized materials predominating. The exploratory boreholes and monitoring wells installed to date suggest that groundwater does not occur as a continuous saturated zone beneath the CD area. It is localized along the historic and current ephemeral channels with little to no groundwater present on the bedrock ridges that border the site (Haley & Aldrich 1995).

Groundwater elevation measurements collected the week of October 24, 2022, were used to interpolate a potentiometric groundwater surface, which is depicted within Appendix A – Figure 2. The groundwater surface data suggests that groundwater beneath the CCR Landfill generally flows in an east / southeasterly direction towards the Retention Dam.

4.0 GROUNDWATER QUALITY SAMPLING AND ANALYSIS

As detailed in the CCR Landfill Groundwater Detection Monitoring Plan, the current groundwater quality monitoring well network for the CCR Landfill is comprised of five background wells (CC-1, FC-1, FC-2, FC-3A, & FC-3B), four downgradient wells (SC-10, SC-11, SC-12, & SC-13) along the eastern edge of the landfill, and one cross gradient well (SC-14) on the south side of the landfill. Two rounds of semi-annual Appendix III Detection Monitoring and Appendix IV Assessment Monitoring groundwater samples were collected from these wells in March 2022 and September 2022. The locations of the monitoring wells are depicted within Appendix A – Figure 2.

Groundwater samples were collected in general accordance with the 2017 CCR Landfill Groundwater Detection Monitoring Plan. The monitoring wells were purged using dedicated bladder pumps with tubing; after which, the groundwater samples were collected from the discharge tube of the bladder pump directly into laboratory-supplied sample containers. The sample containers were then labeled and placed into an insulated ice-chilled sample cooler. Samples were hand delivered to the analytical laboratory.

In 2018, Utilities' CCR Landfill migrated from Detection Monitoring to Assessment Monitoring. Assessment Monitoring is required whenever a statistically significant increase over background levels has been detected for one or more of the Detection Monitoring constituents. Assessment Monitoring must continue until concentrations of all Detection and Assessment Monitoring constituents are determined to be at or below background values using statistical procedures for two consecutive sampling events.

Boron and fluoride have been measured at concentrations estimated statistically as being significantly higher than background and have not been determined to be at or below background values using statistical procedures for two consecutive sampling events. Therefore, both Detection Monitoring and Assessment Monitoring continued throughout 2022.

4.1 <u>Detection Monitoring</u>

During 2022, Utilities collected groundwater samples semi-annually from the monitoring wells listed in Section 4.0 above and analyzed the samples using EPA and/or industry accepted methods for the Detection Monitoring constituents listed in Appendix III of the EPA CCR Rule (boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids). The laboratory analytical results and sampling dates are summarized in the table presented in Appendix B. Copies of the analytical reports and chain of custody documentation are presented in Appendix C.

4.2 Assessment Monitoring

During 2022, Utilities collected groundwater samples semi-annually from the monitoring wells listed in Section 4.0 above and analyzed the samples using EPA and/or industry accepted methods for the Assessment Monitoring constituents listed in Appendix IV of the EPA CCR Rule (antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, fluoride, lead, lithium, mercury, molybdenum, radium 226 + 228, selenium, and thallium). The laboratory analytical results and sampling dates are summarized in the table presented in Appendix B. Copies of the analytical reports and chain of custody documentation are presented in Appendix C.

4.3 Quality Assurance / Quality Control

Quality assurance and quality control (QA/QC) measures were implemented to ensure the reliability and validity of field and analytical data. Appendix C contains copies of the laboratory analytical reports along with QA/QC data. The QA/QC data includes duplicate samples (identified as Well ID Duplicate), equipment / decontamination blanks (identified by Equip-Blk), method blanks (identified as LRB – Lab Reagent Blank), matrix spike sample results, and laboratory control sample results.

The equipment blanks were collected using laboratory-provided distilled water. Analytes were not detected in the equipment blank samples. During the March 2022 sampling event a duplicate sample was collected from monitoring well SC-11, and during the September 2022 sampling event a duplicate sample was collected from monitoring well SC-12.

Utilities reviewed the analytical results for laboratory QC samples. Review included chain-of-custody record and laboratory-receipt form to verify custody, sample holding-times were met, and samples were properly handled from collection through laboratory analysis. Utilities verified that the laboratory reporting limits for analytes were below applicable regulatory limits (MCL and CCR Rule standards). Laboratory quality control activities were included and are discussed in the Appendix C laboratory report case narratives. Significant QA/QC anomalies were not identified, and all data was determined to be useable.

4.4 Monitoring Well Installation, Repair, and Abandonment

In November 2022, Utilities initiated additional activities as a result of the CCR Landfill ASD for Selenium. Activities included installation of three additional background groundwater monitoring wells. The additional activities are described in the attached August 9, 2022, *Additional Information* letter, reviewed and accepted by the CDPHE on August 10, 2022, see Appendix F. No CCR landfill monitoring wells were repaired or abandoned in 2022.

5.0 STATISTICAL ANALYSIS RESULTS SUMMARY

The methods used to statistically analyze the Detection and Assessment Monitoring groundwater data, the rationale for the analytical methods, and the results of the 2022 statistical analysis are presented in Appendix D.

The 2022 groundwater sampling results suggest that the following EPA CCR Rule Appendix III constituents are present at concentrations estimated as being a statistically significant increase above background:

- ▼ Boron within monitoring wells SC-11 and SC-12
- ▼ Fluoride within monitoring wells SC-12 and SC-13

As previously reported in the Annual Groundwater Monitoring Report for 2021, EPA CCR Rule Appendix IV constituent selenium was measured in downgradient well SC-10 at a statistically significant level exceeding the Groundwater Protection Standards (GWPS) during the second semi-annual (2021) sampling event. Utilities completed an ASD in April 2022. The ASD concluded that the 2021 elevated concentrations of selenium in well SC-10 are due to background conditions and not related to the presence or operation of the CCR Landfill. The ASD is included as Appendix E.

During 2022, no EPA CCR Rule Appendix IV constituents were measured at a statistically significant level exceeding the GWPS.

6.0 GROUNDWATER PROTECTION STANDARDS (GWPS)

GWPS were established in accordance with §257.95(d)(2) of the EPA CCR Rule. The Rule states in §257.95(h) that the GWPS shall be:

- (1) For constituents for which a maximum contaminant level (MCL) has been established under §141.62 and §141.66 of this title, the MCL for that constituent;
- (2) For the following constituents:
 (i) Cobalt 6 micrograms per liter (ug/l);
 (ii) Lead 15 ug/l;

(iii) Lithium 40 ug/l;

(iv) Molybdenum 100 ug/l.

(3) For constituents for which the background level is higher than the levels identified under paragraphs (*h*)(1) and (*h*)(2) of this section, the background concentration.

To create the GWPS, an upper tolerance limit (UTL) was calculated for each of the EPA CCR Rule Appendix IV constituents to establish their background concentration. Each UTL was then compared to the corresponding MCL or EPA CCR Rule standard. If a UTL was greater than the MCL or standard, then the UTL was used as the GWPS.

GWPS were calculated for the 2022 semi-annual sampling events and are provided in the statistical analysis report provided in Appendix D. A summary of the GWPS resulting from the 2022 sampling are presented in the table below:

Appendix IV Constituent	MCL (ug/l)	EPA CCR Rule Standard (ug/l)	Background Higher than MCL or Standard *	Upper Tolerance Limit (ug/l)	GWPS (ug/l)
Antimony	6	-	No	1.36	6
Arsenic	10	-	Yes	12	12
Barium	2000	-	No	36.8	2000
Beryllium	4	-	No	0.2	4
Cadmium	5	-	No	0.921	5
Chromium	100	-	No	6.35	100
Cobalt	-	6	Yes	6.05	6.05
Fluoride	4 mg/L	-	No	0.75 mg/L	4 mg/L
Lead	-	15	No	2.01	15
Lithium	-	40	Yes	1160	1160
Mercury	2	-	No	0.009	2
Molybdenum	-	100	No	10.6	100
Selenium	50	-	Yes	216	216
Thallium	2	-	No	1.79	2
Radium 226 and 228 Combined	5 pCi/l	-	No	4.75 pCi/l	5 pCi/l

GROUNDWATER PROTECTION STANDARDS

Upper tolerance limit calculated for the constituents and compared to the MCL or the EPA CCR Rule standard. If the UTL was greater than the MCL or standard, then the UTL was used as the GWPS.

Once GWPS have been calculated, §257.95(g)(3) requires that the owner / operator determine if any of the Appendix IV constituents are present at a statistically significant level exceeding the GWPS. To determine such, a confidence interval was calculated for each constituent and compared to the GWPS. The confidence interval calculations for 2022 are provided in Appendix D. The confidence interval calculations indicate that no Appendix IV constituents exceeded the GWPS at a statistically significant level in 2022.

7.0 SUMMARY OF FINDINGS

Comparison of the groundwater flow to those historically measured shows de minimis differences in the groundwater flow regime beneath the site. Groundwater associated with the CCR Landfill continues to flow in an east / southeasterly direction towards the Retention Dam, which inhibits its migration off-site.

Statistical analysis suggests that boron concentrations at compliance groundwater monitoring wells SC-11 and SC-12 and fluoride concentrations at compliance groundwater monitoring well SC-12 and SC-13 exhibit a statistically significant increase over background concentrations; therefore, the CCR Landfill will continue with Assessment Monitoring.

No EPA CCR Rule Appendix IV constituents were measured at a statistically significant level exceeding the GWPS during 2022.

The overall CCR Landfill groundwater monitoring program was reviewed. No notable problems were encountered during 2022. In consideration of the complex geology and other constraints, Utilities believes that the current Professional Engineer-certified and CDPHE-approved Coal Combustion Residuals Landfill Groundwater Detection Monitoring Plan continues to be appropriate for the site and compliant with the EPA CCR Rule. In November 2022, Utilities initiated additional activities as a result of the CCR Landfill ASD for Selenium. Activities included installation of three additional background monitoring wells. The additional activities are described in the attached August 9, 2022, *Additional Information* letter, reviewed and accepted by the CDPHE on August 10, 2022, see Appendix F.

7.1 <u>Risk</u>

Utilities believes that the risk posed by the CCR Landfill to human health and the environment via the groundwater exposure pathway continues to be low for the following reasons:

- Groundwater underlying the CSR CD Area (which includes the CCR Landfill) is not used for domestic or agricultural purposes. There are no drinking water or agricultural wells within the CD Area and is no reasonable potential for future domestic or agricultural uses of groundwater within this area, as it is owned and controlled by Utilities.
- Previously evaluated groundwater quality data indicates that groundwater upgradient of and underlying the CSR CD Area, in which the CCR Landfill is located, has a total dissolved solids (TDS) concentration exceeding 10,000 mg/l. The EPA, in their Guidelines for Groundwater Classification Under the EPA Groundwater Protection Strategy, classifies groundwater with TDS concentrations greater than or equal to 10,000 mg/l as Class III water (EPA 1988). Class III is defined as "groundwater not a potential source of drinking water and/or limited beneficial use." The high TDS of groundwater upgradient of and beneath the CD Area discourages its use for domestic or agricultural purposes.
- The CSR Retention Dam inhibits the off-site migration of stormwater and groundwater associated with the CCR Landfill; therefore, limiting the potential for exposure. The Retention Dam largely hydrologically disconnects the CCR Landfill associated groundwater from the downgradient Fountain Creek Alluvial Aquifer (i.e. the closest drinking water source).

7.2 Activities for 2023

For 2023, Utilities plans to continue with Detection Monitoring and Assessment Monitoring. Utilities will also continue conducting the activities described in the attached August 9, 2022, *Additional Information* letter. See Appendix F.

8.0 REFERENCES

AECOM Technical Services. 2017. Coal Combustion Residuals (CCR) Ash Monofill Groundwater Detection Monitoring Plan Clear Spring Ranch, El Paso County, Colorado Revision 0. October 2017.

CDPHE. 2017. E-Mail from Jill Parisi / CDPHE to Patti Zietlow / Colorado Springs Utilities Re: Clear Spring Ranch CCR Landfill Groundwater Detection Monitoring Plan. November 14, 2017.

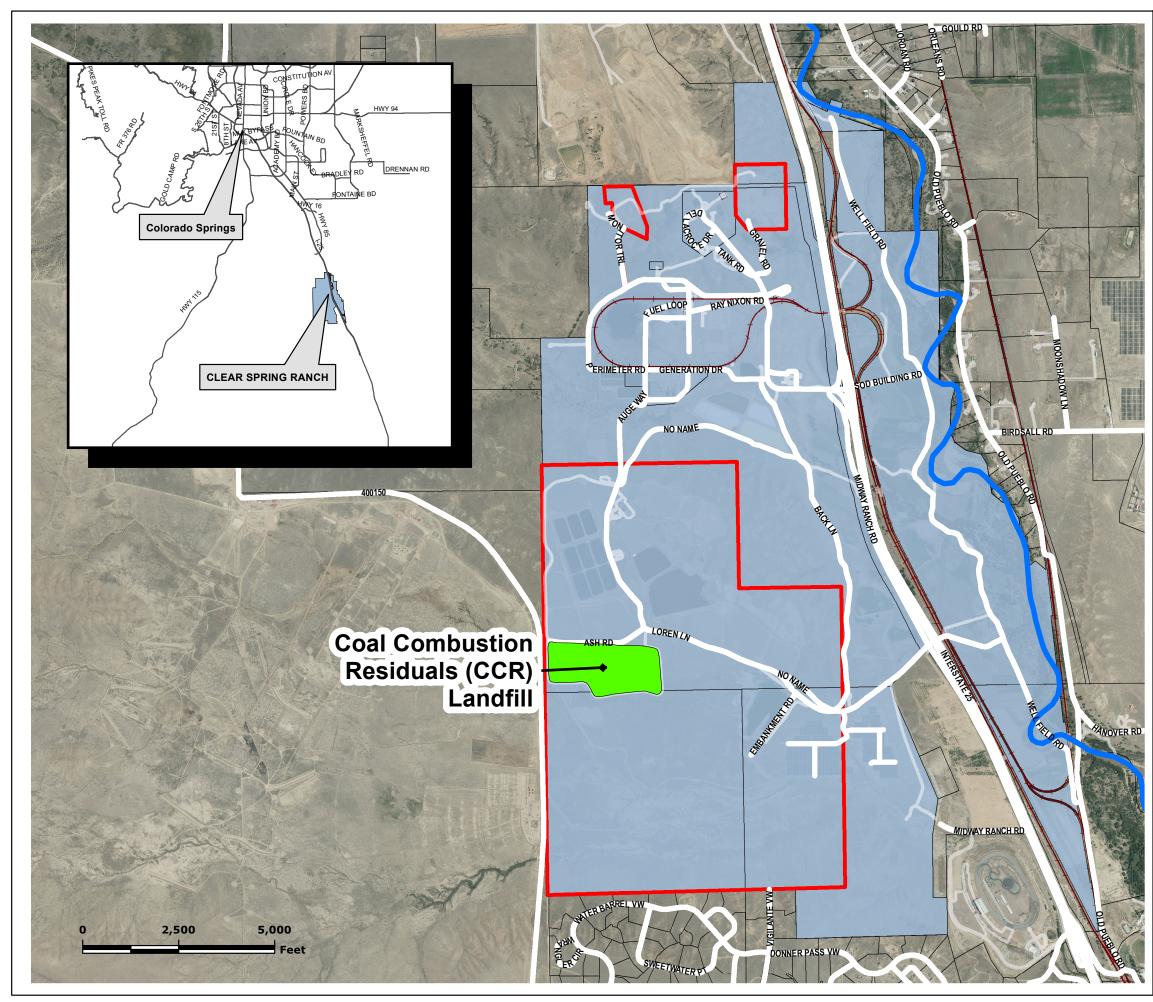
Haley & Aldrich. 1994. Hannah Ranch Dam Seepage Analysis Preliminary Engineering Report. April 1994.

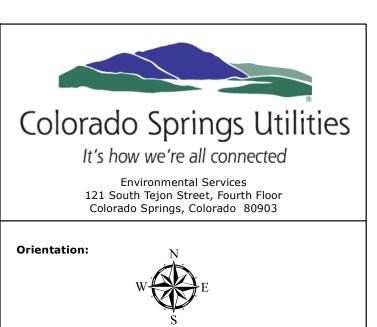
Haley & Aldrich. 1995. Hanna Ranch Supernatant Dam Design Summary Report. February 1995.

Layne Western. 1977. Ash Disposal Site, R.D. Nixon Power Plant. Carl Nuzman, Bruce Maxwell & Carl Larson. August 1977.

Title 40 of the Code of Federal Regulations (CFR) Part 257 Subpart D.

U.S. EPA. 1988. Guidelines for Groundwater Classification Under the EPA Groundwater Protection Strategy. Office of Groundwater Protection. June 1988.




Report Distribution List:

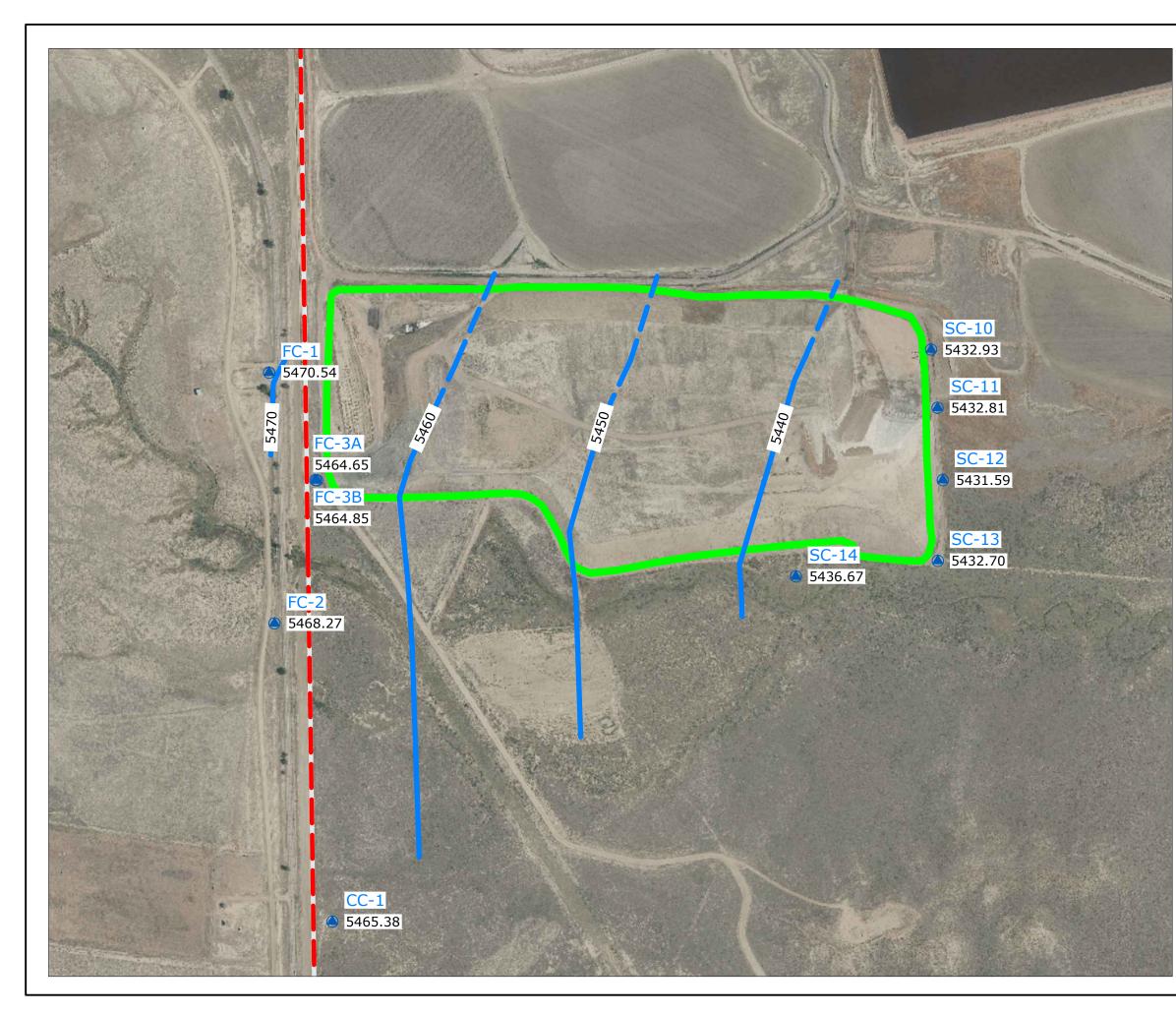
- Ashley Lawrence / Colorado Department of Public Health and Environment
- ▼ Jill Parisi / Colorado Department of Public Health and Environment
- ▼ Nina Ruiz / El Paso County Planning Department
- ▼ Ian Gavin / Colorado Springs Utilities Electric Plants
- Colorado Springs Utilities' CCR Landfill Website

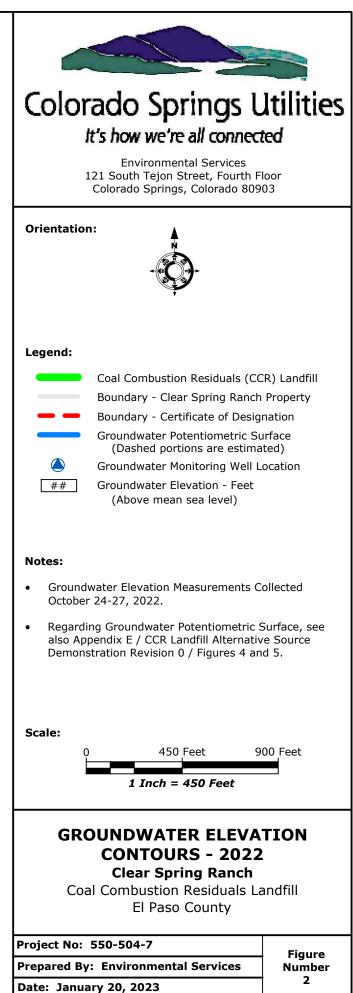
APPENDIX A

Vicinity Map and Groundwater Elevation Contours

Legend:

Fountain Creek


Boundary - Certificate of Designation CD-04-001


Boundary - Clear Spring Ranch

VICINITY MAP

Clear Spring Ranch Coal Combustion Residuals Landfill El Paso County

Project No:	550-504-7	Figure
Prepared B	y: Environmental Services	Number
Date:	January 20, 2023	1

APPENDIX B

Groundwater Laboratory Analytical Results and Groundwater Depths / Elevations

CCR LANDFILL Groundwater Laboratory Analytical Results

Monitoring	Sample	Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium	Chloride	Chromium	Cobalt	Fluoride	Lead	Lithium	Mercury	Molybdenun	рН	Radium 226 + Radium 228	Selenium	Sulfate	Thallium	Total Dissolved Solids
Well ID	Date	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	mg/L	ug/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	SU	pCi/L	ug/L	mg/L	ug/L	mg/L
CC-1	3/14/2022	<0.50	10.4	5.4	<0.20	952	<0.50	84100	1660	4.7	<5.00	0.58	0.60	738	0.005	0.97	7.2	2.63	106	20100	<0.50	34200
00-1	9/27/2022	<0.50	18.2	7.3	<0.20	1000	<0.50	377000	1680	2.3	6.83	0.23	1.8	879	0.005	1.3	7.1	5.50	224	20400	0.51	35100
FC-1	3/14/2022	<0.50	<1.0	8.7	<0.20	922	<0.50	66100	778	2.7	<5.00	0.18	<0.50	978	0.002	2.0	7.3	1.54	4.3	13200	<0.50	18000
10-1	9/27/2022	<0.50	4.9	9.3	<0.20	990	<0.50	383000	770	1.2	<5.00	0.12	<0.50	1190	0.002	2.1	7.3	4.12	17.6	12800	<0.50	21500
FC-2	3/14/2022	<0.50	<1.0	6.5	<0.20	969	<0.50	366000	100	2.0	<5.00	0.71	<0.50	294	0.003	2.8	7.4	0.656	35.5	6150	<0.50	9800
10-2	9/27/2022	<0.50	2.0	8.6	<0.20	988	<0.50	408000	104	1.2	<5.00	0.52	<0.50	300	0.007	2.9	7.5	2.18	37.0	5920	<0.50	10000
FC-3A	3/14/2022	<0.50	<1.0	10.8	<0.20	1070	<0.50	405000	126	1.7	<5.00	0.62	<0.50	324	<0.002	7.2	7.5	0.448	39.4	5350	<0.50	8940
10-54	9/27/2022	<0.50	3.7	14.9	<0.20	1060	<0.50	418000	130	1.5	<5.00	0.46	<0.50	334	0.003	7.0	7.5	1.63	51.2	5140	<0.50	9060
FC-3B	3/14/2022	<0.50	2.8	11.8	<0.20	1210	<0.50	221000	213	2.4	<5.00	0.62	<0.50	279	<0.002	1.3	7.5	1.21	<1.0	4050	<0.50	7240
10-56	9/27/2022	<0.50	6.8	12.2	<0.20	1200	<0.50	203000	200	3.4	<5.00	0.48	0.81	286	0.003	2.3	7.7	2.96	6.2	4430	<0.50	6960
SC-10	3/15/2022	<0.50	4.8	9.3	<0.20	1170	<0.50	293000	956	2.7	<5.00	0.84	<0.50	781	0.011	3.6	7.4	2.47	246	9760	<0.50	17700
30-10	9/26/2022	<0.50	8.3	43.6	<0.20	1210	<0.50	416000	960	7.3	<5.00	0.53	3.3	624	0.012	6.5	7.4	2.87	232	9170	<0.50	16700
	3/15/2022	<0.50	4.7	6.2	<0.20	2380	<0.50	436000	1140	3.0	<5.00	0.87	<0.50	630	0.010	2.6	7.4	1.11	218	7810	<0.50	14500
SC-11	3/15/2022 Dup.	<0.50	5.6	5.5	<0.20	2470	<0.50	442000	1130	3.3	<5.00	0.87	<0.50	638	0.010	3.0	7.4	0.551	206	8040	<0.50	14600
	9/26/2022	<0.50	11.4	40.5	<0.20	2510	<0.50	438000	1150	5.5	<5.00	0.57	2.4	532	0.012	3.5	7.4	1.97	240	7740	<0.50	15100
	3/15/2022	<0.50	<1.0	6.3	<0.20	4020	<0.50	376000	276	2.6	<5.00	1.43	<0.50	436	0.002	5.5	7.4	-0.0421	5.6	8880	<0.50	14500
SC-12	9/26/2022	<0.50	<1.0	22.8	<0.20	4370	<0.50	374000	288	2.6	<5.00	0.93	0.97	406	0.004	6.1	7.4	3.38	12.7	8550	<0.50	11100
	9/26/2022 Dup.	<0.50	1.8	16.7	<0.20	4420	<0.50	380000	301	2.1	<5.00	0.92	0.66	391	0.004	6.6	7.4	3.79	15.4	8440	<0.50	14300
SC-13	3/15/2022	<0.50	<1.0	6.7	<0.20	1490	<0.50	347000	164	2.4	<5.00	1.14	<0.50	352	0.002	3.6	7.4	0.183	25.0	7110	<0.50	11800
30-13	9/26/2022	<0.50	<1.0	18.4	<0.20	1560	<0.50	378000	154	2.0	<5.00	0.78	0.65	288	0.004	3.8	7.5	1.71	23.9	6960	<0.50	11200
SC-14	3/15/2022	<0.50	<1.0	5.7	<0.20	1480	<0.50	366000	154	2.1	<5.00	1.11	<0.50	353	0.002	10.5	7.4	0.381	1.6	7220	<0.50	11500
30-14	9/26/2022	<0.50	2.4	79.8	<0.20	1450	<0.50	362000	146	10.4	<5.00	0.74	5.4	276	0.011	11.0	7.5	4.84	6.1	6930	<0.50	11700

* Metals are Total Recoverable

* See laboratory reports for data qualifiers

< Indicates the constituent was not detected above the stated laboratory reporting limit

Dup = Duplicate

CCR LANDFILL Groundwater Depths / Elevations

Monitoring Well ID	cc	:-1	FC	:-1	FC	2-2	FC	-3A	FC	-3B	SC	-10	sc	-11	sc	-12	SC	-13	sc	-14
Measuring Point Elevation*	5478	3.67	5486	6.87	5483	3.00	548	4.29	548	3.75	544	7.65	544	4.54	544	4.32	544	5.98	545	0.23
Date Measured	Depth to Water	Water Surface Elevation																		
6/22/2016	14.07	5,464.60	15.53	5,471.34	13.49	5,469.51					11.43	5,436.22	8.40	5,436.14	9.29	5,435.23	9.92	5,436.06	9.94	5,440.29
6/23/2016							17.91	5,466.38	48.85	5,434.90										
8/2/2016	13.95	5,464.72	15.57	5,471.30	13.67	5,469.33	17.85	5,466.44	47.62	5,436.13										
8/3/2016		-									11.40	5,436.25	8.15	5,436.39	9.56	5,434.96	10.30	5,435.68	10.21	5,440.02
9/19/2016	13.74	5,464.93	15.55	5,471.32	13.41	5,469.59	17.70	5,466.59	43.52	5,440.23										
9/20/2016		-	-	•		•					11.28	5,436.37	8.28	5,436.26	9.70	5,434.82	10.50	5,435.48	10.54	5,439.69
10/12/2016	13.85	5,464.82	15.40	5,471.47	13.49	5,469.51	17.80	5,466.49	45.58	5,438.17										· .
10/13/2016											11.39	5,436.26	8.30	5,436.24	9.79	5,434.73	10.49	5,435.49	10.52	5,439.71
11/15/2016	13.79	5,464.88	15.26	5,471.61	13.38	5,469.62	17.54	5,466.75	43.01	5,440.74		-		_						-
11/16/2016		-		-							11.15	5,436.50	8.07	5,436.47	9.51	5,435.01	10.15	5,435.83	10.08	5,440.15
1/18/2017	13.35	5,465.32	15.04	5,471.83	13.25	5,469.75	17.51	5,466.78	37.68	5,446.07										-
1/19/2017		0,.00.02		0,11100		0,100110		0,100110			11.40	5,436.25	8.44	5,436.10	9.42	5,435.10	9.87	5,436.11	9.56	5,440.67
2/14/2017	13.93	5,464.74	15.39	5,471.48	13.35	5,469.65	17.71	5,466.58	44.27	5,439.48	11.10	0,100.20	0.11	0,100.10	0.12	0,100.10		0,100.11		0,110.01
2/15/2017		0,101.11	10.00	0,171110		0,100.00		0,100.00	11.27	0,100.10	11.78	5,435.87	8.74	5,435.80	9.38	5,435.14	9.88	5,436.10	9.64	5,440.59
2/28/2017	13.71	5,464.96	15.00	5,471.87	13.06	5,469.94	17.60	5,466.69	48.20	5,435.55	11.70	0,400.07		0,400.00	0.00	0,400.14		0,400.10		0,440.00
3/1/2017	10.71	0,404.00	10.00	0,471.07		0,400.04	17.00	0,400.00	40.20	0,400.00	. 12.03	5,435.62	9.05	5,435.49	9.57	5,434.95	9.95	5,436.03	9.83	5,440.40
11/13/2017	13.16	5,465.51	14.78	5,472.09	13.10	5,469.90	17.28	5,467.01	. 22.21	5,461.54	12.00	0,400.02	5.00	0,400.40	5.57	3,434.33	3.35	0,400.00		3,770.70
11/14/2017		3,403.31	14.70	5,472.05		3,403.30	17.20	3,407.01	22.21	3,401.34	10.82	5,436.83	7.85	5,436.69	9.05	5,435.47	9.54	5,436.44	9.32	5,440.91
2/14/2018	13.26	5,465.41	14.69	5,472.18	12.91	5,470.09	17.23	5,467.06	. 28.84	5,454.91	10.02	3,430.03	7.00	3,430.03	9.00	5,455.47		3,430.44		3,440.91
2/15/2018		3,403.41	14.03	5,472.10	12.31	5,470.03	17.25	3,407.00	20.04	5,454.91	11.15	5,436.50	8.13	5,436.41	9.04	5,435.48	9.40	5,436.58	. 8.94	5,441.29
9/25/2018	13.54	5,465.13	14.94	5,471.93	12.88	5,470.12	17.25	5,467.04	17.06	5,466.69	11.15	5,430.50	0.13	5,430.41	9.04	5,455.46	9.40	5,430.56	0.94	5,441.29
9/26/2018		5,405.15	14.94	5,471.95	12.00	5,470.12	17.25	5,407.04	17.00	5,400.09	11.24	5,436.41	8.28	5,436.26	9.45	5,434.87	10.39	5,435.59	10.30	5,439.93
5/14/2019	13.54	5,465.13	14.79	5,472.08	12.71	5,470.29	17.24	5,467.05	16.43	5,467.32	11.24	5,450.41	0.20	5,430.20	9.45	5,454.07	10.39	5,455.59	10.30	5,439.95
	13.34	5,405.15	14.79	5,472.00	12.71	5,470.29	17.24	5,407.05	10.45	5,407.52	11.85		8.87		• 9.11		9.44		9.14	
5/15/2019											11.00	5,435.80	0.07	5,435.67	9.11	5,435.21	9.44	5,436.54	9.14	5,441.09
9/24/2019	13.36	5,465.31	14.90	5,471.97	13.71	5,469.29	18.34	5,465.95	17.57	5,466.18				5,435.04						
9/25/2019											12.62	5,435.03	9.50	5,435.04	10.89	5,433.43	11.41	5,434.57	11.69	5,438.54
4/6/2020	13.34	5,465.33	15.20	5,471.67	12.99	5,470.01	17.65	5,466.64	17.04	5,466.71										
4/7/2020			-	•	•	•					13.06	5,434.59	10.07	5,434.47	10.38	5,433.94	10.35	5,435.63	10.32	5,439.91
11/16/2020	13.62	5,465.05		-			19.00	5,465.29	18.13	5,465.62							11.99	5,433.99	12.25	5,437.98
11/17/2020	•	•	15.52	5,471.35	14.09	5,468.91	•	•	•	•	13.45	5,434.20	10.45	5,434.09	11.65	5,432.67	•			
3/24/2021											13.60	5,434.05	10.60	5,433.94	10.99	5,433.33	11.14	5,434.84	11.35	5,438.88
3/25/2021	13.35	5,465.32	15.51	5,471.36	13.32	5,469.68	18.14	5,466.15	17.62	5,466.13			•		•	•				
9/29/2021		•	15.83	5,471.04	14.41	5,468.59	•		•	•	13.96	5,433.69	11.01	5,433.53	12.28	5,432.04	13.05	5,432.93	13.22	5,437.01
9/30/2021	13.56	5,465.11	-	•		•	19.48	5,464.81	18.57	5,465.18		•		•	•	· ·		•		· ·
3/14/2022	13.69	5,464.98	16.23	5,470.64	14.09	5,468.91	19.04	5,465.25	18.22	5,465.53		•		•	•	· ·		•		· ·
3/15/2022		•				•	-				14.52	5,433.13	11.51	5,433.03	11.72	5,432.60	11.78	5,434.20	12.01	5,438.22
9/26/2022		•	-			•	-				15.01	5,432.64	11.64	5,432.90	13.59	5,430.73	13.61	5,432.37	13.64	5,436.59
9/27/2022	15.36	5,463.31	17.00	5,469.87	14.80	5,468.20	19.88	5,464.41	21.91	5,461.84										

Depth to Water = Feet

Water Surface Elevation = Feet Above Mean Sea Level

^{*} Monitoring Well Top of Casings (Measuring Point Elevations) Re-surveyed in 2022

APPENDIX C

Laboratory Analytical Results

Colorado Springs Utilities It's how we're all connected

Laboratory Report For:

Coal Combustion Residuals - Landfill

Colorado Springs Utilities Environmental Services

Report Authorized by: Wendy M Asay

Title: Environmental Specialist

Report Date: April 8, 2022

Report generated by: Wendy M. Asay

Colorado Springs Utilities Laboratory Services Section certifies that the test results meet all approved method and Laboratory Quality Assurance Plan requirements unless otherwise noted

Samples

468319	14-Mar-2022 12:37	Crooked Canyon Well #1
468320	14-Mar-2022 09:18	Fort Carson Well #1
468321	14-Mar-2022 10:44	Fort Carson Well #2
468322	14-Mar-2022 15:23	Fort Carson Well #3A
468323	14-Mar-2022 14:14	Fort Carson Well #3B
468324	14-Mar-2022 16:01	Equipment Blank
468325	15-Mar-2022 09:21	Sand Canyon Well #10
468326	15-Mar-2022 13:19	Sand Canyon Well #13
468327	15-Mar-2022 14:23	Sand Canyon Well #14
468328	15-Mar-2022 10:29	Sand Canyon Well #11
468329	15-Mar-2022 10:29	Sand Canyon Well #12
468330	15-Mar-2022 12:11	Sand Canyon Well #11

LIMS #: 468319 Sample Date: 3/14/2022 12:37:07 PM Sample Point: CC_1 Sample Point Description: Crooked Canyon Well #1 Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.2	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	12.6	degrees C	0.000			1	
+	SM_2510_B	Conductivity	23700	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	37	mV	0			1	
	SM_2130_B	Turbidity	2.8	NTU	0.05			1	
	NA	Depth to Water	13.69	ft.	0.0000			1	
	SM_2540_C	Total Dissolved Solids	34200	mg/L	10			1	
	SM_4500_FC	Fluoride (Total)	0.58	mg/L	0.10			1	
	EPA_300_0	Chloride	1660	mg/L	0.50	D	03/16/2022	1	
		Sulfate	20100	mg/L	0.50	D	03/16/2022	1	
	EPA_200_8	Antimony (Total Recoverable)	<0.50	ug/L	0.50		03/22/2022	1	
		Arsenic (Total Recoverable)	10.4	ug/L	1.0		03/22/2022	1	
		Barium (Total Recoverable)	5.4	ug/L	0.20		03/22/2022	1	
		Beryllium (Total Recoverable)	<0.20	ug/L	0.20		03/22/2022	1	
		Cadmium (Total Recoverable)	<0.50	ug/L	0.50		03/22/2022	1	
		Chromium (Total Recoverable)	4.7	ug/L	1.0		03/22/2022	1	
		Lead (Total Recoverable)	0.60	ug/L	0.50		03/22/2022	1	
		Molybdenum (Total Recoverable)	0.97	ug/L	0.20		03/22/2022	1	
		Selenium (Total Recoverable)	106	ug/L	1.0	D	03/22/2022	1	
		Thallium (Total Recoverable)	<0.50	ug/L	0.50		03/22/2022	1	
	EPA_200_7	Boron (Total Recoverable)	952	ug/L	20.0		03/18/2022	1	
		Calcium (Total Recoverable)	84100	ug/L	100	T1/D	03/18/2022	1	
		Cobalt (Total Recoverable)	<5.00	ug/L	5.00		03/18/2022	1	
		Lithium (Total Recoverable)	738	ug/L	10.0		03/18/2022	1	
	EPA_1631	Mercury (Total)	0.005	ug/L	0.002	Т	03/30/2022	1	

LIMS #: 468320 Sample Date: 3/14/2022 9:18:07 AM Sample Point: FC_1 Sample Point Description: Fort Carson Well #1 Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.3	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	13.1	degrees C	0.000			1	
+	SM_2510_B	Conductivity	18400	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	12	mV	0			1	
	SM_2130_B	Turbidity	1.6	NTU	0.05			1	
	NA	Depth to Water	16.23	ft.	0.0000			1	
	SM_2540_C	Total Dissolved Solids	18000	mg/L	10			1	
	SM_4500_FC	Fluoride (Total)	0.18	mg/L	0.10			1	
	EPA_300_0	Chloride	778	mg/L	0.50	D	03/16/2022	1	
		Sulfate	13200	mg/L	0.50	D	03/16/2022	1	
	EPA_200_8	Antimony (Total Recoverable)	<0.50	ug/L	0.50		03/22/2022	1	
		Arsenic (Total Recoverable)	<1.0	ug/L	1.0		03/22/2022	1	
		Barium (Total Recoverable)	8.7	ug/L	0.20		03/22/2022	1	
		Beryllium (Total Recoverable)	<0.20	ug/L	0.20		03/22/2022	1	
		Cadmium (Total Recoverable)	<0.50	ug/L	0.50		03/22/2022	1	
		Chromium (Total Recoverable)	2.7	ug/L	1.0		03/22/2022	1	
		Lead (Total Recoverable)	<0.50	ug/L	0.50		03/22/2022	1	
		Molybdenum (Total Recoverable)	2.0	ug/L	0.20		03/22/2022	1	
		Selenium (Total Recoverable)	4.3	ug/L	1.0		03/22/2022	1	
		Thallium (Total Recoverable)	<0.50	ug/L	0.50		03/22/2022	1	
	EPA_200_7	Boron (Total Recoverable)	922	ug/L	20.0		03/18/2022	1	
		Calcium (Total Recoverable)	66100	ug/L	100	T1/D	03/18/2022	1	
		Cobalt (Total Recoverable)	<5.00	ug/L	5.00		03/18/2022	1	
		Lithium (Total Recoverable)	978	ug/L	10.0		03/18/2022	1	
	EPA_1631	Mercury (Total)	0.002	ug/L	0.002	т	03/30/2022	1	

LIMS #: 468321 Sample Date: 3/14/2022 10:44:07 AM Sample Point: FC_2 Sample Point Description: Fort Carson Well #2 Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.4	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	12.8	degrees C	0.000			1	
+	SM_2510_B	Conductivity	8290	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	-11	mV	0			1	
	SM_2130_B	Turbidity	6.9	NTU	0.05			1	
	NA	Depth to Water	14.09	ft.	0.0000			1	
	SM_2540_C	Total Dissolved Solids	9800	mg/L	10			1	
	SM_4500_FC	Fluoride (Total)	0.71	mg/L	0.10			1	
	EPA_200_8	Antimony (Total Recoverable)	<0.50	ug/L	0.50		03/22/2022	1	
		Arsenic (Total Recoverable)	<1.0	ug/L	1.0		03/22/2022	1	
		Barium (Total Recoverable)	6.5	ug/L	0.20		03/22/2022	1	
		Beryllium (Total Recoverable)	<0.20	ug/L	0.20		03/22/2022	1	
		Cadmium (Total Recoverable)	<0.50	ug/L	0.50		03/22/2022	1	
		Chromium (Total Recoverable)	2.0	ug/L	1.0		03/22/2022	1	
		Lead (Total Recoverable)	<0.50	ug/L	0.50		03/22/2022	1	
		Molybdenum (Total Recoverable)	2.8	ug/L	0.20		03/22/2022	1	
		Selenium (Total Recoverable)	35.5	ug/L	1.0		03/22/2022	1	
		Thallium (Total Recoverable)	<0.50	ug/L	0.50		03/22/2022	1	
	EPA_200_7	Boron (Total Recoverable)	969	ug/L	20.0		03/18/2022	1	
		Calcium (Total Recoverable)	366000	ug/L	100	T1/D	03/18/2022	1	
		Cobalt (Total Recoverable)	<5.00	ug/L	5.00		03/18/2022	1	
		Lithium (Total Recoverable)	294	ug/L	10.0		03/18/2022	1	
	EPA_1631	Mercury (Total)	0.003	ug/L	0.002	т	03/30/2022	1	
	EPA_300_0	Chloride	100	mg/L	0.50	D	03/17/2022	1	
		Sulfate	6150	mg/L	0.50	D	03/16/2022	1	

LIMS #: 468322 Sample Date: 3/14/2022 3:23:07 PM Sample Point: FC_3A Sample Point Description: Fort Carson Well #3A Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.5	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	13.2	degrees C	0.000			1	
+	SM_2510_B	Conductivity	7610	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	-33	mV	0			1	
	SM_2130_B	Turbidity	2.3	NTU	0.05			1	
	NA	Depth to Water	19.04	ft.	0.0000			1	
	SM_2540_C	Total Dissolved Solids	8940	mg/L	10			1	
	SM_4500_FC	Fluoride (Total)	0.62	mg/L	0.10			1	
	EPA_300_0	Chloride	126	mg/L	0.50	D	03/17/2022	1	
		Sulfate	5350	mg/L	0.50	D	03/17/2022	1	
	EPA_200_8	Antimony (Total Recoverable)	<0.50	ug/L	0.50		03/22/2022	1	
		Arsenic (Total Recoverable)	<1.0	ug/L	1.0		03/22/2022	1	
		Barium (Total Recoverable)	10.8	ug/L	0.20		03/22/2022	1	
		Beryllium (Total Recoverable)	<0.20	ug/L	0.20		03/22/2022	1	
		Cadmium (Total Recoverable)	<0.50	ug/L	0.50		03/22/2022	1	
		Chromium (Total Recoverable)	1.7	ug/L	1.0		03/22/2022	1	
		Lead (Total Recoverable)	<0.50	ug/L	0.50		03/22/2022	1	
		Molybdenum (Total Recoverable)	7.2	ug/L	0.20		03/22/2022	1	
		Selenium (Total Recoverable)	39.4	ug/L	1.0		03/22/2022	1	
		Thallium (Total Recoverable)	<0.50	ug/L	0.50		03/22/2022	1	
	EPA_200_7	Boron (Total Recoverable)	1070	ug/L	20.0		03/18/2022	1	
		Calcium (Total Recoverable)	405000	ug/L	100	T1/D	03/18/2022	1	
		Cobalt (Total Recoverable)	<5.00	ug/L	5.00		03/18/2022	1	
		Lithium (Total Recoverable)	324	ug/L	10.0		03/18/2022	1	
	EPA_1631	Mercury (Total)	<0.002	ug/L	0.002	Т	03/30/2022	1	

LIMS #: 468323 Sample Date: 3/14/2022 2:14:07 PM Sample Point: FC_3B Sample Point Description: Fort Carson Well #3B Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.5	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	13.2	degrees C	0.000			1	
+	SM_2510_B	Conductivity	7570	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	-188	mV	0			1	
	SM_2130_B	Turbidity	2.1	NTU	0.05			1	
	NA	Depth to Water	18.22	ft.	0.0000			1	
	SM_2540_C	Total Dissolved Solids	7240	mg/L	10			1	
	SM_4500_FC	Fluoride (Total)	0.62	mg/L	0.10			1	
	EPA_200_8	Antimony (Total Recoverable)	<0.50	ug/L	0.50		03/22/2022	1	
		Arsenic (Total Recoverable)	2.8	ug/L	1.0		03/22/2022	1	
		Barium (Total Recoverable)	11.8	ug/L	0.20		03/22/2022	1	
		Beryllium (Total Recoverable)	<0.20	ug/L	0.20		03/22/2022	1	
		Cadmium (Total Recoverable)	<0.50	ug/L	0.50		03/22/2022	1	
		Chromium (Total Recoverable)	2.4	ug/L	1.0		03/22/2022	1	
		Lead (Total Recoverable)	<0.50	ug/L	0.50		03/22/2022	1	
		Molybdenum (Total Recoverable)	1.3	ug/L	0.20		03/22/2022	1	
		Selenium (Total Recoverable)	<1.0	ug/L	1.0		03/22/2022	1	
		Thallium (Total Recoverable)	<0.50	ug/L	0.50		03/22/2022	1	
	EPA_200_7	Boron (Total Recoverable)	1210	ug/L	20.0		03/18/2022	1	
		Calcium (Total Recoverable)	221000	ug/L	100	T1/D	03/18/2022	1	
		Cobalt (Total Recoverable)	<5.00	ug/L	5.00		03/18/2022	1	
		Lithium (Total Recoverable)	279	ug/L	10.0		03/18/2022	1	
	EPA_1631	Mercury (Total)	<0.002	ug/L	0.002	т	03/30/2022	1	
	EPA_300_0	Chloride	213	mg/L	0.50	D	03/17/2022	1	
		Sulfate	4050	mg/L	0.50	D	03/17/2022	1	

LIMS #: 468324 Sample Date: 3/14/2022 4:01:07 PM Sample Point: EQUIP_BLK Sample Point Description: Equipment Blank Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
	SM_2540_C	Total Dissolved Solids	<10	mg/L	10			1	
	SM_4500_FC	Fluoride (Total)	<0.10	mg/L	0.10			1	
	EPA_300_0	Chloride	<0.50	mg/L	0.50		03/16/2022	1	
		Sulfate	<0.50	mg/L	0.50		03/16/2022	1	
	EPA_200_8	Antimony (Total Recoverable)	<0.50	ug/L	0.50		03/22/2022	1	
		Arsenic (Total Recoverable)	<1.0	ug/L	1.0		03/22/2022	1	
		Barium (Total Recoverable)	<0.20	ug/L	0.20		03/22/2022	1	
		Beryllium (Total Recoverable)	<0.20	ug/L	0.20		03/22/2022	1	
		Cadmium (Total Recoverable)	<0.50	ug/L	0.50		03/22/2022	1	
		Chromium (Total Recoverable)	<1.0	ug/L	1.0		03/22/2022	1	
		Lead (Total Recoverable)	<0.50	ug/L	0.50		03/22/2022	1	
		Molybdenum (Total Recoverable)	<0.20	ug/L	0.20		03/22/2022	1	
		Selenium (Total Recoverable)	<1.0	ug/L	1.0		03/22/2022	1	
		Thallium (Total Recoverable)	<0.50	ug/L	0.50		03/22/2022	1	
	EPA_200_7	Boron (Total Recoverable)	<20.0	ug/L	20.0		03/18/2022	1	
		Calcium (Total Recoverable)	<100	ug/L	100		03/18/2022	1	
		Cobalt (Total Recoverable)	<5.00	ug/L	5.00		03/18/2022	1	
		Lithium (Total Recoverable)	<10.0	ug/L	10.0		03/18/2022	1	
	EPA_1631	Mercury (Total)	<0.002	ug/L	0.002	Т	03/30/2022	1	

LIMS #: 468325 Sample Date: 3/15/2022 9:21:13 AM Sample Point: SC_10 Sample Point Description: Sand Canyon Well #10 Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.4	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	13.9	degrees C	0.000			1	
+	SM_2510_B	Conductivity	15900	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	-64	mV	0			1	
	SM_2130_B	Turbidity	33	NTU	0.05			1	
	NA	Depth to Water	14.52	ft.	0.0000			1	
	SM_4500_FC	Fluoride (Total)	0.84	mg/L	0.10			1	
	EPA_300_0	Chloride	956	mg/L	0.50	D	03/17/2022	1	
		Sulfate	9760	mg/L	0.50	D	03/17/2022	1	
	EPA_200_8	Antimony (Total Recoverable)	<0.50	ug/L	0.50		03/21/2022	1	
		Arsenic (Total Recoverable)	4.8	ug/L	1.0		03/21/2022	1	
		Barium (Total Recoverable)	9.3	ug/L	0.20		03/24/2022	1	
		Beryllium (Total Recoverable)	<0.20	ug/L	0.20		03/21/2022	1	
		Cadmium (Total Recoverable)	<0.50	ug/L	0.50		03/21/2022	1	
		Chromium (Total Recoverable)	2.7	ug/L	1.0		03/21/2022	1	
		Lead (Total Recoverable)	<0.50	ug/L	0.50		03/21/2022	1	
		Molybdenum (Total Recoverable)	3.6	ug/L	0.20		03/21/2022	1	
		Selenium (Total Recoverable)	246	ug/L	1.0	D	03/24/2022	1	
		Thallium (Total Recoverable)	<0.50	ug/L	0.50		03/21/2022	1	
	EPA_200_7	Boron (Total Recoverable)	1170	ug/L	20.0		03/22/2022	1	
		Calcium (Total Recoverable)	293000	ug/L	100	T1/D	03/18/2022	1	
		Cobalt (Total Recoverable)	<5.00	ug/L	5.00		03/18/2022	1	
		Lithium (Total Recoverable)	781	ug/L	10.0	Т	03/22/2022	1	
	EPA_1631	Mercury (Total)	0.011	ug/L	0.002		03/30/2022	1	
	SM_2540_C	Total Dissolved Solids	17700	mg/L	10			1	

LIMS #: 468326 Sample Date: 3/15/2022 1:19:13 PM Sample Point: SC_13 Sample Point Description: Sand Canyon Well #13 Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.4	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	12.6	degrees C	0.000			1	
+	SM_2510_B	Conductivity	9690	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	-25	mV	0			1	
	SM_2130_B	Turbidity	6.5	NTU	0.05			1	
	NA	Depth to Water	11.78	ft.	0.0000			1	
	SM_2540_C	Total Dissolved Solids	11800	mg/L	10			1	
	SM_4500_FC	Fluoride (Total)	1.14	mg/L	0.10			1	
	EPA_300_0	Chloride	164	mg/L	0.50	D	03/17/2022	1	
		Sulfate	7110	mg/L	0.50	D	03/17/2022	1	
	EPA_200_8	Antimony (Total Recoverable)	<0.50	ug/L	0.50		03/22/2022	1	
		Arsenic (Total Recoverable)	<1.0	ug/L	1.0		03/21/2022	1	
		Barium (Total Recoverable)	6.7	ug/L	0.20		03/21/2022	1	
		Beryllium (Total Recoverable)	<0.20	ug/L	0.20		03/21/2022	1	
		Cadmium (Total Recoverable)	<0.50	ug/L	0.50		03/21/2022	1	
		Chromium (Total Recoverable)	2.4	ug/L	1.0		03/21/2022	1	
		Lead (Total Recoverable)	<0.50	ug/L	0.50		03/22/2022	1	
		Molybdenum (Total Recoverable)	3.6	ug/L	0.20		03/21/2022	1	
		Selenium (Total Recoverable)	25.0	ug/L	1.0		03/22/2022	1	
		Thallium (Total Recoverable)	<0.50	ug/L	0.50		03/22/2022	1	
	EPA_200_7	Boron (Total Recoverable)	1490	ug/L	20.0		03/22/2022	1	
		Calcium (Total Recoverable)	347000	ug/L	100	T1/D	03/18/2022	1	
		Cobalt (Total Recoverable)	<5.00	ug/L	5.00		03/18/2022	1	
		Lithium (Total Recoverable)	352	ug/L	10.0	т	03/22/2022	1	
	EPA_1631	Mercury (Total)	0.002	ug/L	0.002		03/30/2022	1	

LIMS #: 468327 Sample Date: 3/15/2022 2:23:13 PM Sample Point: SC_14 Sample Point Description: Sand Canyon Well #14 Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.4	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	12.1	degrees C	0.000			1	
+	SM_2510_B	Conductivity	9640	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	119	mV	0			1	
	SM_2130_B	Turbidity	0.70	NTU	0.05			1	
	NA	Depth to Water	12.01	ft.	0.0000			1	
	SM_2540_C	Total Dissolved Solids	11500	mg/L	10			1	
	SM_4500_FC	Fluoride (Total)	1.11	mg/L	0.10			1	
	EPA_300_0	Chloride	154	mg/L	0.50	D	03/17/2022	1	
		Sulfate	7220	mg/L	0.50	D	03/17/2022	1	
	EPA_200_8	Antimony (Total Recoverable)	<0.50	ug/L	0.50		03/21/2022	1	
		Arsenic (Total Recoverable)	<1.0	ug/L	1.0		03/21/2022	1	
		Barium (Total Recoverable)	5.7	ug/L	0.20		03/21/2022	1	
		Beryllium (Total Recoverable)	<0.20	ug/L	0.20		03/21/2022	1	
		Cadmium (Total Recoverable)	<0.50	ug/L	0.50		03/21/2022	1	
		Chromium (Total Recoverable)	2.1	ug/L	1.0		03/21/2022	1	
		Lead (Total Recoverable)	<0.50	ug/L	0.50		03/21/2022	1	
		Molybdenum (Total Recoverable)	10.5	ug/L	0.20		03/21/2022	1	
		Selenium (Total Recoverable)	1.6	ug/L	1.0		03/21/2022	1	
		Thallium (Total Recoverable)	<0.50	ug/L	0.50		03/21/2022	1	
	EPA_200_7	Boron (Total Recoverable)	1480	ug/L	20.0		03/22/2022	1	
		Calcium (Total Recoverable)	366000	ug/L	100	T1/D	03/18/2022	1	
		Cobalt (Total Recoverable)	<5.00	ug/L	5.00		03/18/2022	1	
		Lithium (Total Recoverable)	353	ug/L	10.0	Т	03/22/2022	1	
	EPA_1631	Mercury (Total)	0.002	ug/L	0.002		03/30/2022	1	

LIMS #: 468328 Sample Date: 3/15/2022 10:29:13 AM Sample Point: SC_11 Sample Point Description: Sand Canyon Well #11 Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.4	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	13.8	degrees C	0.000			1	
+	SM_2510_B	Conductivity	13900	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	27	mV	0			1	
	SM_2130_B	Turbidity	22	NTU	0.05			1	
	NA	Depth to Water	11.51	ft.	0.0000			1	
	SM_2540_C	Total Dissolved Solids	14500	mg/L	10			1	
	SM_4500_FC	Fluoride (Total)	0.87	mg/L	0.10			1	
	EPA_200_8	Antimony (Total Recoverable)	<0.50	ug/L	0.50		03/21/2022	1	
		Arsenic (Total Recoverable)	4.7	ug/L	1.0		03/21/2022	1	
		Barium (Total Recoverable)	6.2	ug/L	0.20	D	03/24/2022	1	
		Beryllium (Total Recoverable)	<0.20	ug/L	0.20		03/21/2022	1	
		Cadmium (Total Recoverable)	<0.50	ug/L	0.50		03/21/2022	1	
		Chromium (Total Recoverable)	3.0	ug/L	1.0		03/21/2022	1	
		Lead (Total Recoverable)	<0.50	ug/L	0.50		03/21/2022	1	
		Molybdenum (Total Recoverable)	2.6	ug/L	0.20		03/21/2022	1	
		Selenium (Total Recoverable)	218	ug/L	1.0	D	03/24/2022	1	
		Thallium (Total Recoverable)	<0.50	ug/L	0.50		03/21/2022	1	
	EPA_200_7	Boron (Total Recoverable)	2380	ug/L	20.0		03/22/2022	1	
		Calcium (Total Recoverable)	436000	ug/L	100	T1/D	03/18/2022	1	
		Cobalt (Total Recoverable)	<5.00	ug/L	5.00		03/18/2022	1	
		Lithium (Total Recoverable)	630	ug/L	10.0	Т	03/22/2022	1	
	EPA_1631	Mercury (Total)	0.010	ug/L	0.002		03/30/2022	1	
	EPA_300_0	Chloride	1140	mg/L	0.50	D	03/16/2022	1	
		Sulfate	7810	mg/L	0.50	D	03/17/2022	1	

LIMS #: 468329 Sample Date: 3/15/2022 10:29:13 AM Sample Point: SC_12 Sample Point Description: Sand Canyon Well #12 Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.4	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	14.5	degrees C	0.000			1	
+	SM_2510_B	Conductivity	12800	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	-16	mV	0			1	
	SM_2130_B	Turbidity	1.8	NTU	0.05			1	
	NA	Depth to Water	11.72	ft.	0.0000			1	
	SM_2540_C	Total Dissolved Solids	14500	mg/L	10			1	
	SM_4500_FC	Fluoride (Total)	1.43	mg/L	0.10			1	
	EPA_300_0	Chloride	276	mg/L	0.50	D	03/17/2022	1	
		Sulfate	8880	mg/L	0.50	D	03/17/2022	1	
	EPA_200_8	Antimony (Total Recoverable)	<0.50	ug/L	0.50		03/21/2022	1	
		Arsenic (Total Recoverable)	<1.0	ug/L	1.0		03/21/2022	1	
		Barium (Total Recoverable)	6.3	ug/L	0.20		03/21/2022	1	
		Beryllium (Total Recoverable)	<0.20	ug/L	0.20		03/21/2022	1	
		Cadmium (Total Recoverable)	<0.50	ug/L	0.50		03/21/2022	1	
		Chromium (Total Recoverable)	2.6	ug/L	1.0		03/21/2022	1	
		Lead (Total Recoverable)	<0.50	ug/L	0.50		03/21/2022	1	
		Molybdenum (Total Recoverable)	5.5	ug/L	0.20		03/21/2022	1	
		Selenium (Total Recoverable)	5.6	ug/L	1.0		03/21/2022	1	
		Thallium (Total Recoverable)	<0.50	ug/L	0.50		03/21/2022	1	
	EPA_200_7	Boron (Total Recoverable)	4020	ug/L	20.0		03/31/2022	1	
		Lithium (Total Recoverable)	436	ug/L	10.0		03/31/2022	1	
	EPA_200_7	Calcium (Total Recoverable)	376000	ug/L	100	T1/D	03/18/2022	1	
		Cobalt (Total Recoverable)	<5.00	ug/L	5.00		03/18/2022	1	
	EPA_1631	Mercury (Total)	0.002	ug/L	0.002		03/30/2022	1	

LIMS #: 468330 Sample Date: 3/15/2022 12:11:13 PM Sample Point: SC_11 Sample Point Description: Sand Canyon Well #11 Collection Comments: SC_11 duplicate Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
	SM_2540_C	Total Dissolved Solids	14600	mg/L	10			1	
	SM_4500_FC	Fluoride (Total)	0.87	mg/L	0.10			1	
	EPA_300_0	Chloride	1130	mg/L	0.50	D	03/17/2022	1	
		Sulfate	8040	mg/L	0.50	D	03/17/2022	1	
	EPA_200_8	Antimony (Total Recoverable)	<0.50	ug/L	0.50		03/21/2022	1	
		Arsenic (Total Recoverable)	5.6	ug/L	1.0		03/21/2022	1	
		Barium (Total Recoverable)	5.5	ug/L	0.20		03/24/2022	1	
		Beryllium (Total Recoverable)	<0.20	ug/L	0.20		03/21/2022	1	
		Cadmium (Total Recoverable)	<0.50	ug/L	0.50		03/21/2022	1	
		Chromium (Total Recoverable)	3.3	ug/L	1.0		03/21/2022	1	
		Lead (Total Recoverable)	<0.50	ug/L	0.50		03/21/2022	1	
		Molybdenum (Total Recoverable)	3.0	ug/L	0.20		03/21/2022	1	
		Selenium (Total Recoverable)	206	ug/L	1.0	D	03/24/2022	1	
		Thallium (Total Recoverable)	<0.50	ug/L	0.50		03/21/2022	1	
	EPA_200_7	Boron (Total Recoverable)	2470	ug/L	20.0		03/22/2022	1	
		Calcium (Total Recoverable)	442000	ug/L	100	T1/D	03/18/2022	1	
		Cobalt (Total Recoverable)	<5.00	ug/L	5.00		03/18/2022	1	
		Lithium (Total Recoverable)	638	ug/L	10.0	т	03/22/2022	1	
	EPA_1631	Mercury (Total)	0.010	ug/L	0.002		03/30/2022	1	

Flags

- * Analysis performed by an external contract laboratory.
- + Analysis performed in the field.

Data Qualifiers

D - Value reported is multiplied by a dilution factor. The reporting limit is not.

T- MS recovery outside the established range. The recovery is matrix related, not method related.

T1 - The analyte concentration is disproportionate to the spike level and is outside the established range. **Glossary**

DQ - Data Qualifer RL – Reporting Limit MDL – Method Detection Limit Dil Fac – Dilution Factor

Case Narrative

CCR Landfill Groundwater Assessment Upgradient Wells Sample Date: 3/14/2022

QC Report Needed

Sampler:		055		DH Field (su) SM 4500 H	Temperature, Field ('C) SM 2550 B. Field ('C)	Conductivity, Field (umhos/cm) SM 2510 B	Oxidation Reduction Polential, Find (mV)	Turbidity, Flad (NTU), SM 2130 B	Depth to Water (feet)	Fluoride, SM 4500 F.C	Total Dissolved Solids	Chloride, Sulfale E.C.	EPA 200.7 (B, Ca, Co & Li - Tolal	EFA 200.8 (Sb. As Ba, Be, Cd. Cr. Pb. Mo, Se & Tr. Total Recoverable) & Tr. Total	Mercury, EPA 1631 (not collecte Using clean-hands(rin-) collecte	Total Radium 226 & Radium 226 (Sent to Test America Padium 226	ommenis	
LOCATION	# Bottles	LIMS #	Sample Time	Please mark bo	xes that apply.	<u> </u>	104.5	1~~	1.5		<u> </u>	<u> </u>	144	1404	133	1~ 3	0	1
CC_1	8	468319	1237	7.15	12.6	23,744	36.7	2.81	13.69	×	×	×	×	x	×	×		
FC_1	8	468320	0918	7.28	13.1	18,387	11.9	1.58	16.23	×	×	×	×	x	×	×	-	
FC_2	8	468321	1044	7,45	12.8	8,286	-10,9	6.91	14.09	×	×	×	×	x	×	×		
FC_3A	8	468322	1523	7.50	13.2	7,609	-33.2	2.32	19.04	×	x	x	×	×	X	X		
FC_3B	8	468323	1414	7.48	13.2	7,568	-187.8	Z.14	18.2Z	×	×	x	×	x	x	×		-
EQUIP_BLK	6	468324	1601							×	×	x	×	x	x			
Total # of Bottles	46	\mathcal{A}									1-250 mL GP	1-250 mL GP	1-500 mL New Certified plastic	1-500 mL New Certified plastic	glass acid- rinsed	plastic		
Relinquished by		rin lot name La For Ry Nelson	Nelso	n				3-14 3/14	-22 3/15/22	Date/Tir @ @ 01				Actions Workflow: Project ID Test Sche	CCR_LANE CCR_LANE CCR_LANE CCR_LANE dule: CCR_ s are NOT	DFILL D LAND		

Note: Samples left in cooler on ice in locked storage area of sample receiving on 3/14/22

CCR Landfill Groundwater Assessment Downgradient and Cross Gradient Wells

Sample Date: 3/15/2022

QC Report Needed

Sample	•r:	F055		04, Field (su) SM 4500 H	Temperature, Field ('C) SM 2550 B	Conductivity, Field (umhos/cm) SM 2510 B	Oxidation Reduction Pollential, (mV)	Turbidity, Field (NTU), SM 2130 B	Depth to Water (feer)	Fluoride, SM 4500 F.C	Total Dissolved Solids, Sur	Chloride, Sulfate En.	EPA 200.7 (B. Ca, Co & Li - Tolal	EPA 200.8 (Sb, AS, Ba, Be, Cd, Cr, Pb, Mo, Se & TJ - Tolal Recoverable)	Mercury, EPA 1631 (not collect. Using clean-hands in not collect.	Total Radium 226 & Radium of Sent to Test Amod	Comments	
LOCATION SC_10	# Bottles	465325_ HIV	Sample Time	Please mark bo	kes that apply					x	x	x	x	x	x	×		
	8	466235	0921	7.38	13.9	15,942	-63.9	33.2	14.52	Ĺ		^				Â		
SC_13	8	468326 440	1319	7.39	12.6	9,692	-25.0	6.48	11.78	×	x	х	×	x	×	x		
SC_14	8	468327	1423	7,38	12.1	9 ,636	119.3	0.70	12.01	×	×	х	x	x	×	x		
SC_11	8	468328	1029	7.36	13.8	13,925	27.4	28.3	11.51	×	x	х	x	x	x	x		
SC_11 Duplicate	8	468330	1029							×	×	x	x	x	x	X		
SC_12	8	468329	1211	7.37	14.5	12,792	-15.5	1.79	11.72	x	x	х	×	x	x	X		
Total # of Bottles	48						4		•	1-500 mL GP	1-250 mL GP	1-250 mL GP	1-500 mL New Certified plastic	1-500 mL New Certified plastic	1-250 mL glass acid rinsed	2-1000 I- mL plastic		
	Signature/F	rint last name							Date/Time		_			Action	S		ple Rejections/]
Relinquished by	A	1 Fos	5		991-1992-1-1			3-1	5-22	<u> </u>	'g2	0		Workfic Project Test So	ow: CCR_LA ID: CCR_L chedule: CC	ANDFILL AND R_LAND		
Received by	Vil	lig Nelson	Nelson					3/11	0/22	@ () ⁻	105)		Sample	es are NOT	filtered in	the field.	
		0						1							<u>, , </u>			

* Note: Samples left in cooler on ice in locked storage area of sample receiving on 3/15/22

It's how we're all connected

Laboratory Services Section QC Report

CCR Landfill Assessment March 2022

Quality Assurance Approval: Lesley Susic

Date: 4/10/2022

QC Narrative

This report is for sample numbers 468319 – 468330.

Total Dissolved Solids by Standard Methods 2540 C

There are no anomalies to report for this analysis.

Fluoride by Standard Methods 4500 F C

There are no anomalies to report for this analysis.

Anions by EPA Method 300.0

There are no anomalies to report for this analysis.

Mercury by EPA 1631 E

The matrix spike recovery is outside the established range in sample 468323. The recovery is matrix related, not method related. Associated data are qualified.

EPA 200.7

The analyte concentration in the samples is disproportionate to the spike level for Total Recoverable Calcium in samples 468323 and 468328. The performance of the method is shown to be in control. Associated calcium data are qualified.

The matrix spike recovery is outside the established range for Lithium in sample 468328. The recovery is matrix related, not method related. Associated lithium data are qualified.

EPA 200.8

There are no anomalies to report for this analysis.

Method: Total Dissolved Solids by Standard Methods 2540 C Batch Analysis date: 3/15/22 Sampled date: 3/14/22 for samples 468319 - 468324 Sampled date: 3/15/22 for samples 468326 – 468328 and 468330

Matrix QC performed on sample 468323

QC Type	Analyte	Recovery (%)	Acceptable Range (%)	RPD (%)	RPD Limit (%)
QCS	Total Dissolved Solids	100	85 - 110		
Duplicate	Total Dissolved Solids			1	<10

Method: Total Dissolved Solids by Standard Methods 2540 C Batch Analysis date: 3/21/22 Sampled date: 3/15/22 for samples 468325 and 468329

Matrix QC performed on sample 468325

QC Type	Analyte	Recovery (%)	Acceptable Range (%)	RPD (%)	RPD Limit (%)
QCS	Total Dissolved Solids	101	85 - 110		
Duplicate	Total Dissolved Solids			1	<10

Method: Fluoride by Standard Methods 4500 F C Batch Analysis date: 3/18/22 Sampled date: 3/14/22 for samples 468319 - 468324 Sampled date: 3/15/22 for samples 468325 - 468330

Matrix QC performed on samples 468326 and 468329

QC Type	Analyte		Recovery (%)	Acceptable Range (%)	RPD (%)	RPD Limit (%)
MRL	Fluoride (Total)		104	90 - 110		
QCS	Fluoride (Total)		95	90 - 110		
MS	Fluoride (Total) (468	326)	93	80 - 120		
MSD	Fluoride (Total) (468	326)			<1	<20
MS	Fluoride (Total) (468	329)	91	80 - 120		
MSD	Fluoride (Total) (468	329)			<1	<20
QC Type	Analyte	Con	centration	Limit		
LRB	Fluoride (Total)	<0	.10 mg/L	0.10 mg/L		

Method: Anions by EPA Method 300.0 Batch Analysis date: 3/16/22 Sampled date: 3/14/22 for samples 468319 - 468324 Sampled date: 3/15/22 for samples 468325 - 468330

QC Type	Analyte	Recovery (%)	Acceptable Range (%)	RPD (%)	RPD Limit (%)
MRL	Chloride	102	50-150		
LFB	Chloride	100	90-110	<1	<20
LD	Chloride (468328)			<1	<20
LD	Chloride (468321)			11	<20
MS	Chloride (468328)	99	80-120		
MS	Chloride (468321)	101	80-120		
MRL	Sulfate	104	50-150		
LFB	Sulfate	102	90-110	<1	<20
LD	Sulfate (468328)			3	<20
LD	Sulfate (468321)			2	<20
MS	Sulfate (468328)	104	80-120		
MS	Sulfate (468321)	102	80-120		
QC Type	Analyte	Concentration	Limit		
LRB	Chloride	<0.17 mg/L	0.17 mg/L		
LRB	Sulfate	<0.17 mg/L	0.17 mg/L		

Method: Mercury by EPA 1631 E Batch Analysis date: 3/30/22 Sampled date: 3/14/22 for samples 468319 - 468324 Sampled date: 3/15/22 for samples 468325 - 468330

Matrix QC performed on samples 468323 and 468327

QC Type	Analyte	Recovery (%)	Acceptable Range (%)	RPD (%)	RPD Limit (%)
MRL	Mercury (Total)	100	50-150		
QCS	Mercury (Total)	110	77-123		
MS	Mercury (Total) (468323)	<u>*65</u>	71-125		
MSD	Mercury (Total) (468323)			4	<24
MS	Mercury (Total) (468327)	86	71-125		
MSD	Mercury (Total) (468327)			6	<24
QC Type	Analyte	Concentration	Limit		
LRB	Mercury (Total)	<0.5 ng/L	0.5 ng/L		

*See Narrative

Method: EPA 200.7

Batch Analysis date: 3/18/22 for all Ca and Co, B and Li only for samples 468319-468324 Digestion date: 3/17/22 for all Ca and Co, B and Li only for samples 468319-468324 Sampled date: 3/14/22 for samples 468319 - 468324 Sampled date: 3/15/22 for samples 468325 - 468330

QC Type	Analyte	Recovery	Acce	ptable	RPD	RPD Limit
		(%)	Rang	ge (%)	(%)	(%)
MRL	Boron (Total Recoverable)	103	50-	·150		
LFB	Boron (Total Recoverable)	104	85-	·115		
MS	Boron (Total Recoverable) (468323)	109	70-130			
MSD	Boron (Total Recoverable) (468323)				3	<20
MRL	Calcium (Total Recoverable)	109	50-	150		
LFB	Calcium (Total Recoverable)	102	85-	·115		
MS	Calcium (Total Recoverable) (468323)	<u>*214</u>	70-	130		
MSD	Calcium (Total Recoverable) (468323)				3	<20
MS	Calcium (Total Recoverable) (468328)	<u>*-787</u>	70-	·130		
MSD	Calcium (Total Recoverable) (468328)				18	<20
MRL	Cobalt (Total Recoverable)	99	50-	150		
LFB	Cobalt (Total Recoverable)	102	85-	115		
MS	Cobalt (Total Recoverable) (468323)	94	70-	·130		
MSD	Cobalt (Total Recoverable) (468323)				1	<20
MS	Cobalt (Total Recoverable) (468328)	79	70-	·130		
MSD	Cobalt (Total Recoverable) (468328)				9	<20
MRL	Lithium (Total Recoverable)	95	50-	·150		
LFB	Lithium (Total Recoverable)	102	85-	·115		
MS	Lithium (Total Recoverable) (468323)	93	70-	·130		
MSD	Lithium (Total Recoverable) (468323)				2	<20
QC Type	Analyte	Concentra	tion		Limit	
LRB	Boron (Total Recoverable)	<7.57 ug/L		_ 7.57 ug/L		
LRB	Calcium (Total Recoverable)	<16.5 ug/	/L	16	5.5 ug/L	
LRB	Cobalt (Total Recoverable)	<1.12 ug/	/L	1.1	12 ug/L	
LRB	Lithium (Total Recoverable)	<8.27 ug	/L	8.2	27 ug/L	

Matrix QC performed on samples 468323 and 468328

*See Narrative

QC Type	Analyte	Recovery (%)		ptable je (%)	RPD (%)	RPD Lim (%)	nit
MRL	Boron (Total Recoverable)	106	50-	·150			
LFB	Boron (Total Recoverable)	102	85	·115			
MS	Boron (Total Recoverable)	94	70-	·130			
MSD	Boron (Total Recoverable)				<1	<20	
MRL	Lithium (Total Recoverable)	103	50-	·150			
LFB	Lithium (Total Recoverable)	99	85	·115			
MS	Lithium (Total Recoverable)	102	70-	·130			
MSD	Lithium (Total Recoverable)				<1	<20	
QC Type	Analyte	Concentration L		Limit			
LRB	Boron (Total Recoverable)	<7.57 ug/L		7.57 ug/L			
LRB	Lithium (Total Recoverable)	<8.27 ug	/L	8.27 ug/L			

Matrix QC performed on samples 468329

Method: EPA 200.7

Batch Analysis date: 3/22/22 for B and Li for samples 468325-468328 and 468330 Digestion date: 3/21/22 for B and Li for samples 468325-468328 and 468330 Sampled date: 3/15/22 for samples 468325-468328 and 468330

Matrix QC performed on samples 468328

QC Type	Analyte	Recovery (%)		ptable je (%)	RPD (%)	D Limit (%)
		. ,			(70)	(70)
MRL	Boron (Total Recoverable)	107	50-	150		
LFB	Boron (Total Recoverable)	106	85-	115		
MS	Boron (Total Recoverable)	116	70-	130		
MSD	Boron (Total Recoverable)				<1	<20
MRL	Lithium (Total Recoverable)	103	50-	150		
LFB	Lithium (Total Recoverable)	105	85-	115		
MS	Lithium (Total Recoverable)	<u>*135</u>	70-	130		
MSD	Lithium (Total Recoverable)				1	<20
QC Type	Analyte	Concentration			Limit	
LRB	Boron (Total Recoverable)	<7.57 ug/L		7.57 ug/L		
LRB	Lithium (Total Recoverable)	<8.27 ug	/L	8.27 ug/L		
*0 N						

*See Narrative

EPA Method: EPA 200.8 Digestion date: 3/18/22 Batch Analysis date: 3/22/22 Sampled date: 3/14/22 for samples 468319 - 468324

Matrix QC performed on sample 468323

QC Type	Analyte	Recovery (%)	Accept Range		RPD (%)	RPD Limit (%)
MRL	Antimony (Total Recoverable)	95	50-1	50		
LFB	Antimony (Total Recoverable)	94	85-1	15		
MS	Antimony (Total Recoverable)	106	70-1	30		
MSD	Antimony (Total Recoverable)				2	<20
MRL	Arsenic (Total Recoverable)	100	50-1	50		
LFB	Arsenic (Total Recoverable)	91	85-1	15		
MS	Arsenic (Total Recoverable)	103	70-1	30		
MSD	Arsenic (Total Recoverable)				<1	<20
MRL	Barium (Total Recoverable)	104	50-1	50		
LFB	Barium (Total Recoverable)	96	85-1	15		
MS	Barium (Total Recoverable)	119	70-1	30		
MSD	Barium (Total Recoverable)				<1	<20
MRL	Beryllium (Total Recoverable)	84	50-1	50		
LFB	Beryllium (Total Recoverable)	91	85-1	15		
MS	Beryllium (Total Recoverable)	80	70-1	30		
MSD	Beryllium (Total Recoverable)				1	<20
MRL	Cadmium (Total Recoverable)	96	50-1	50		
LFB	Cadmium (Total Recoverable)	94	85-1			
MS	Cadmium (Total Recoverable)	97	70-1			
MSD	Cadmium (Total Recoverable)				2	<20
MRL	Chromium (Total Recoverable)	109	50-1	50		
LFB	Chromium (Total Recoverable)	100	85-1			
MS	Chromium (Total Recoverable)	100	70-1			
MSD	Chromium (Total Recoverable)				1	<20
MRL	Lead (Total Recoverable)	96	50-1	50		
LFB	Lead (Total Recoverable)	94	85-1			
MS	Lead (Total Recoverable)	108	70-1			
MSD	Lead (Total Recoverable)		-		1	<20
MRL	Molybdenum (Total Recoverable)	98	50-1	50		
LFB	Molybdenum (Total Recoverable)	95	85-1			
MS	Molybdenum (Total Recoverable)	108	70-1			
MSD	Molybdenum (Total Recoverable)				<1	<20
MRL	Selenium (Total Recoverable)	108	50-1	50		
LFB	Selenium (Total Recoverable)	85	85-1			
MS	Selenium (Total Recoverable)	80	70-1			
MSD	Selenium (Total Recoverable)				3	<20
MRL	Thallium (Total Recoverable)	96	50-1	50	-	
LFB	Thallium (Total Recoverable)	93	85-1			1
MS	Thallium (Total Recoverable)	106	70-1			
MSD	Thallium (Total Recoverable)				2	<20
QC Type	Analyte	Concentrat	ion	Limit		-20
LRB	Antimony (Total Recoverable)	<0.18 ug/		18 ug/l		
LRB	Arsenic (Total Recoverable)	<0.16 ug/		36 ug/l		
LRB	Barium (Total Recoverable)	<0.30 ug/		10 ug/l		
		<0.10 ug/	L U.	i uy/i	_	

LRB	Beryllium (Total Recoverable)	<0.12 ug/L	0.12 ug/L
LRB	Cadmium (Total Recoverable)	<0.14 ug/L	0.14 ug/L
LRB	Chromium (Total Recoverable)	<0.27 ug/L	0.27 ug/L
LRB	Lead (Total Recoverable)	<0.14 ug/L	0.14 ug/L
LRB	Molybdenum (Total Recoverable)	<0.27 ug/L	0.27 ug/L
LRB	Selenium (Total Recoverable)	<0.44 ug/L	0.44 ug/L
LRB	Thallium (Total Recoverable)	<0.11 ug/L	0.11 ug/L

EPA Method: EPA 200.8

Digestion date: 3/17/22

Batch Analysis date: 3/21/22 for all except Ba and Se on samples 468325, 468628 and 468330 Batch Analysis date: 3/24/22 for all except Ba and Se on samples 468325, 468628 and 468330 Sampled date: 3/15/22 for samples 468325 - 468330

Matrix QC performed on sample 468328

QC Type	Analyte	Recovery	Acceptable	RPD	RPD
		(%)	Range (%)	(%)	Limit (%)
MRL	Antimony (Total Recoverable)	98	50-150		
LFB	Antimony (Total Recoverable)	96	85-115		
MS	Antimony (Total Recoverable)	114	70-130		
MSD	Antimony (Total Recoverable)			<1	<20
MRL	Arsenic (Total Recoverable)	96	50-150		
LFB	Arsenic (Total Recoverable)	87	85-115		
MS	Arsenic (Total Recoverable)	128	70-130		
MSD	Arsenic (Total Recoverable)			5	<20
MRL	Barium (Total Recoverable)	86	50-150		
LFB	Barium (Total Recoverable)	106	85-115		
MS	Barium (Total Recoverable)	89	70-130		
MSD	Barium (Total Recoverable)			2	<20
MRL	Beryllium (Total Recoverable)	116	50-150		
LFB	Beryllium (Total Recoverable)	87	85-115		
MS	Beryllium (Total Recoverable)	87	70-130		
MSD	Beryllium (Total Recoverable)			<1	<20
MRL	Cadmium (Total Recoverable)	98	50-150		
LFB	Cadmium (Total Recoverable)	96	85-115		
MS	Cadmium (Total Recoverable)	106	70-130		
MSD	Cadmium (Total Recoverable)			<1	<20
MRL	Chromium (Total Recoverable)	98	50-150		
LFB	Chromium (Total Recoverable)	105	85-115		
MS	Chromium (Total Recoverable)	110	70-130		
MSD	Chromium (Total Recoverable)			4	<20
MRL	Lead (Total Recoverable)	96	50-150		
LFB	Lead (Total Recoverable)	96	85-115		
MS	Lead (Total Recoverable)	122	70-130		
MSD	Lead (Total Recoverable)			<1	<20
MRL	Molybdenum (Total Recoverable)	113	50-150		
LFB	Molybdenum (Total Recoverable)	95	85-115		
MS	Molybdenum (Total Recoverable)	122	70-130		
MSD	Molybdenum (Total Recoverable)			<1	<20

MRL	Selenium (Total Recoverable)	86	50-150		
LFB	Selenium (Total Recoverable)	109	85-115		
MS	Selenium (Total Recoverable)	118	70-130		
MSD	Selenium (Total Recoverable)			<1	<20
MRL	Thallium (Total Recoverable)	98	50-150		
LFB	Thallium (Total Recoverable)	94	85-115		
MS	Thallium (Total Recoverable)	120	70-130		
MSD	Thallium (Total Recoverable)			2	<20
QC Type	Analyte	Concentratio	on Limit		
LRB	Antimony (Total Recoverable)	<0.18 ug/L	0.18 ug/l		
LRB	Arsenic (Total Recoverable)	<0.36 ug/L	0.36 ug/l		
LRB	Barium (Total Recoverable)	<0.10 ug/L	0.10 ug/l		
		<0.10 ug/L	0.10 ug/i	_	
LRB	Beryllium (Total Recoverable)	<0.12 ug/L			
LRB	Beryllium (Total Recoverable) Cadmium (Total Recoverable)		0.12 ug/l	L	
		<0.12 ug/L	0.12 ug/l 0.14 ug/l	L	
LRB	Cadmium (Total Recoverable)	<0.12 ug/L <0.14 ug/L	0.12 ug/l 0.14 ug/l 0.27 ug/l		
LRB LRB	Cadmium (Total Recoverable) Chromium (Total Recoverable)	<0.12 ug/L <0.14 ug/L <0.27 ug/L	0.12 ug/l 0.14 ug/l 0.27 ug/l 0.14 ug/l 0.14 ug/l 0.27 ug/l	 	
LRB LRB LRB	Cadmium (Total Recoverable) Chromium (Total Recoverable) Lead (Total Recoverable)	<0.12 ug/L <0.14 ug/L <0.27 ug/L <0.14 ug/L	0.12 ug/l 0.14 ug/l 0.27 ug/l 0.14 ug/l 0.14 ug/l 0.27 ug/l	 	

EPA Method: EPA 200.8 Digestion date: 3/17/22 Batch Analysis date: 3/24/22 Sampled date: 3/15/22 for samples 468325, 468628 and 468330

Matrix QC performed on sample 468328

QC Type	Analyte	Recovery (%)		ceptable ange (%)		PD %)	RPD Limit (%)
MRL	Barium (Total Recoverable)	86	ļ	50-150			
LFB	Barium (Total Recoverable)	106	5	85-115			
MS	Barium (Total Recoverable)	89	-	70-130			
MSD	Barium (Total Recoverable)					2	<20
MRL	Selenium (Total Recoverable)	86	ļ	50-150			
LFB	Selenium (Total Recoverable)	109	5	85-115			
MS	Selenium (Total Recoverable)	118	-	70-130			
MSD	Selenium (Total Recoverable)					<1	<20
QC Type	Analyte	Concentration		Limit			
LRB	Barium (Total Recoverable)	<0.10 ug/	L	0.10 ug/l	_		
LRB	Selenium (Total Recoverable)	<0.44 ug/	L	0.44 ug/l	_		

LD – Field Duplicate

LFB – Laboratory Fortified Blank

LRB – Laboratory Reagent Blank (Method Blank)

QCS – Quality Control Sample

MRL – Minimum Reporting Limit (Verification)

MS – Matrix Spike

MSD – Matrix Spike Duplicate

<u>Underline</u> – Data was outside the limit

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins St. Louis 13715 Rider Trail North Earth City, MO 63045 Tel: (314)298-8566

Laboratory Job ID: 160-44875-1

Client Project/Site: Radiochemistry Analysis

For:

Colorado Springs Utilities Laboratory Services Section 701 E. Las Vegas St., MC 1465 Colorado Springs, Colorado 80903

Attn: Ms. Wendy Asay

Rhonda Ridenhouer)

Authorized for release by: 4/14/2022 11:18:28 PM

Rhonda Ridenhower, Client Service Manager (314)298-8566 Rhonda.Ridenhower@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

www.eurofinsus.com/Env

Table of Contents

1
2
3
4
5
6
7
3
9
16
20
21

Job ID: 160-44875-1

Laboratory: Eurofins St. Louis

Narrative

Job Narrative 160-44875-1

Receipt

The samples were received on 3/17/2022 9:05 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved. The temperature of the cooler at receipt was 9.7° C.

RAD

Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative.

Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date.

Method 904.0 Radium-228

The laboratory control sample recovery is outside the upper QC limit indicating a potential positive bias for that analyte. This analyte was not observed above the RL in the associated samples; therefore the sample data is not adversely affected by this excursion. The data have been reported with this narrative. (LCS 160-555928/1-A)

The detection goal was not met for the following sample(s). Sample was prepped at a reduced volume due to the presence of matrix interferences: 468325 SC_10 (160-44875-6). Analytical results are reported with the detection limit achieved.

The Ba Carrier recovery is outside the lower control limit (40%) for the following sample: 468325 SC_10 (160-44875-6). There was physical evidence of matrix interference apparent during the initial preparation of the sample. The QC samples associated with the batch have acceptable carrier recovery indicating the presence of matrix interference.

The following samples were prepared at a reduced aliquot due to Matrix: 468321 FC_2 (160-44875-3), 468325 SC_10 (160-44875-6), 468328 SC_11 (160-44875-9) and 468330 SC_11 (160-44875-11). A laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) were prepared instead of a sample duplicate (DUP) to demonstrate batch precision.

Method 903.0 Radium-226

The following samples were prepared at a reduced aliquot due to Matrix: 468321 FC_2 (160-44875-3), 468325 SC_10 (160-44875-6), 468328 SC_11 (160-44875-9) and 468330 SC_11 (160-44875-11). A laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) were prepared instead of a sample duplicate (DUP) to demonstrate batch precision.

The barium carrier recovery is outside the lower control limit of 40% (24%) for the following sample due to matrix interferences noted during the initial precipitation: 468325 SC_10 (160-44875-6). The QC samples associated with the batch have acceptable carrier recovery indicating the presence of matrix interference.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 160-44875-1

TestAmerica St. Louis				Ч	Chain of	of C	nst	tody	Re	Custody Record					Tect.	TectAmerica
15/15 Kider I fail North															THE LEADER	THE LEADER IN ENVIRONMENTAL TESTING
Earth City, MO 63045-1205 phone 314.298.8566 fax 314.298.8757	Regul	Regulatory Pro	gram:	MQ	NPDES	RCRA	CRA	 Other: 		al Com	Coal Combustion Rule	Rule			TestAme	TestAmerica Laboratories, Inc.
Client Contact	Project M	anager: M	Project Manager: Wendy Asay		0,	Site Contact:	ntact				Date:				COC No:	
Colorado Springs Utilities	Tel/Fax: 7	Tel/Fax: 719-649-77	96			ab Co	ntact	Lab Contact: Rhonda	da Ride	Ridenhower	Carrier				o	cocs
701 E. Las Vegas St.		Analysis T	urnaround Time	Time		F	┡	-	E	E			F		Sampler:	
Colorado Springs, CO 80903	CALEN	CALENDAR DAYS	WOR	WORKING DAYS				82							For Lab Use Only	e Only:
(719) 668-4603 Phone	TA	TAT if different from Below	rom Below			_		22 e							Walk-in Client:	nt.
(xxx) xxx-xxxx FAX			2 weeks			17		s A I							Lab Sampling	
ct Name: Coal Combustion F			1 week			()		anc								2
Site:			2 days		. / •	JSN		972							Inh / SDG No	
PO#			1 day			1/5		ßЯ								
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	Cont.	Filtered Sa Perform M Total Radi	ibeA letoT	bənidmoƏ			· · · · · · · · · · · · · · · · · · ·				Sam	Samble Specific Notes:
468319 CC_1	3/14/22	1237	υ	ВŴ	2	z	×	×								
468320 FC_1	3/14/22	0918	υ	GW	2	×	×	×								
468321 FC_2	3/14/22	1044	υ	GW	10	z	××	×								
468322 FC_3A	3/14/22	1523	υ	GW	2	z	×××	×								
468323 FC_3B	3/14/22	1414	υ	GW	2	z	××	×								
468325 SC_10	3/15/22	0921	υ	GW	~	z	×××	×								ξιοqλ
468326 SC_13	3/15/22	1319	υ	GW	2	×	×	×								snO J
468327 SC_14	3/15/22	1423	υ	GW	2	×	×	×						-		o uisi
468328 SC_11	3/15/22	1029	υ	GW	2	×	×	×								LE CH
468329 SC_12	3/15/22	1211	υ	GW	~	×	×	×								844-
468330 SC_11	3/15/22	1029	U	N N O	~	^ z	××	×								190
					4	z										
HCI; 3= H2SO4; 4=HNO3;	5=NaOH; 6= Other	Other		Star Sector												
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please I Comments Section if the lab is to dispose of the sample.	Please List any EPA Waste Co	A Waste Co	des for the sample in the	sample ii	the	Sam	ple D	isposa	I (A fee	e may be	Sample Disposal (A fee may be assessed if	sed if s	amples	are retai	samples are retained longer than 1 month)	1 month)
Non-Hazard Flammable Skin Irritant	Poison B	В	Unknown	wn			Retur	Return to Client	It		Disposal by Lab	Lab	Γ	Archive for	Months	hs
Special Instructions/QC Requirements & Comments: Please be sure to	se be sur	e to use	e the listed		method numbers	nmbe	SLS.									
Custody Seals Intact: U Yes No	Custody Seal No.:	eal No.:						Cooler	Temp.	Cooler Temp. (°C): Obs'd	s'd		Corr'd:		Therm ID No	
Relinquished by: Kelly Nelson Kelly Nelson	Company: Leturado	Springs	Utilities	Date/Time 3/1//122	e: 0955	Rece	Received by:	ы К				Company:	ž		Date/Time:	
Relinquished by: FEDEX	Company:			Dáte/Ťime:		Rece	ived	Received	ah			Temps	Z	_	Date/Time:	YOY
Relinquished by:	Company:			Date/Time:		Rece	ived	HULLING	Received M Laboratory aprison	uosuu		Company			Date/Time:	1 2022 0 100
122													Ľ	orm No.	CA-C-WI-002, R	Form No. CA-C-WI-002, Rev. 4.18, dated 9/5/2018

4/14/2022

Page 4 of 21

TestAmerica St. Louis

Chain of Custody Record

Client: Colorado Springs Utilities

Login Number: 44875 List Number: 1 Creator: Johnson, Autumn R

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 160-44875-1

List Source: Eurofins St. Louis

Client: Colorado Springs Utilities Project/Site: Radiochemistry Analysis

Job ID: 160-44875-1

5

6

Qualifiers

Rad Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance limits.
G	The Sample MDC is greater than the requested RL.
U	Result is less than the sample detection limit.
Х	Carrier is outside acceptance limits.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Method Summary

Client: Colorado Springs Utilities Project/Site: Radiochemistry Analysis

Method	Method Description	Protocol	Laboratory
903.0	Radium-226 (GFPC)	EPA	TAL SL
904.0	Radium-228 (GFPC)	EPA	TAL SL
Ra226_Ra228	Combined Radium-226 and Radium-228	TAL-STL	TAL SL
PrecSep_0	Preparation, Precipitate Separation	None	TAL SL
PrecSep-21	Preparation, Precipitate Separation (21-Day In-Growth)	None	TAL SL
None = No	Environmental Protection Agency		

Sample Summary

Client: Colorado Springs Utilities Project/Site: Radiochemistry Analysis

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
160-44875-1	468319 CC_1	Water	03/14/22 12:37	03/17/22 09:05
160-44875-2	468320 FC_1	Water	03/14/22 09:18	03/17/22 09:05
160-44875-3	468321 FC_2	Water	03/14/22 10:44	03/17/22 09:05
160-44875-4	468322 FC_3A	Water	03/14/22 15:23	03/17/22 09:05
160-44875-5	468323 FC_3B	Water	03/14/22 14:14	03/17/22 09:05
160-44875-6	468325 SC_10	Water	03/15/22 09:21	03/17/22 09:05
160-44875-7	468326 SC_13	Water	03/15/22 13:19	03/17/22 09:05
160-44875-8	468327 SC_14	Water	03/15/22 14:23	03/17/22 09:05
160-44875-9	468328 SC_11	Water	03/15/22 10:29	03/17/22 09:05
160-44875-10	468329 SC_12	Water	03/15/22 12:11	03/17/22 09:05
160-44875-11	468330 SC 11	Water	03/15/22 10:29	03/17/22 09:05

Total

Uncert.

(2**σ+/-**)

0.145

Count

Uncert.

(2**σ**+/-)

Limits

40 - 110

0.138

Client Sample ID: 468319 CC_1 Date Collected: 03/14/22 12:37 Date Received: 03/17/22 09:05

Method: 903.0 - Radium-226 (GFPC)

Analyte

Carrier

Ba Carrier

Radium-226

Lab Sample ID: 160-44875-1 Matrix: Water

Analyzed

Analyzed

03/18/22 10:28 04/11/22 20:02

03/18/22 10:28 04/11/22 20:02

Lab Sample ID: 160-44875-2

Matrix: Water

Prepared

Prepared

Matrix: Water

Dil Fac

Dil Fac

1

1

Method: 904.0 -	Radium-228	(GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	2.14		0.464	0.504	1.00	0.532	pCi/L	03/18/22 13:09	03/28/22 19:53	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	97.3		40 - 110					03/18/22 13:09	03/28/22 19:53	1
Y Carrier	80.7		40 - 110					03/18/22 13:09	03/28/22 19:53	1

RL

1.00

MDC Unit

0.104 pCi/L

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

Result Qualifier

%Yield Qualifier

0.491

97.3

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	2.63		0.484	0.524	5.00	0.532	pCi/L		04/12/22 21:38	1

Client Sample ID: 468320 FC_1

Date Collected: 03/14/22 09:18

Date Received: 03/17/22 09:05

Method: 903.0 - Radium-226 (GFPC)

Carrier Ba Carrier		Qualifier	Limits 40 - 110	0.110	1.00	0.124	poile	Prepared	Analyzed	Dil Fac
Analyte Radium-226	Result	Qualifier	<u>(2σ+/-)</u> 0.113	(2σ+/-) 0.116	RL 1.00	0.124		Prepared 03/18/22 10:28	Analyzed 04/11/22 20:02	Dil Fac
			Count Uncert.	Total Uncert.						

Method: 904.0 - Radium-228 (GFPC)

Analyte	Result	Qualifier	Count Uncert. (2σ+/-)	Total Uncert. (2σ+/-)	RL	MDC	Unit	Prepared	Analvzed	Dil Fac
Radium-228	1.27		0.425	0.440	1.00	0.573	pCi/L	03/18/22 13:09	03/28/22 19:53	1
Carrier Ba Carrier	% Yield 95.6	Qualifier	Limits 40 - 110					Prepared 03/18/22 13:09	Analyzed	Dil Fac
Y Carrier	78.9		40 - 110						03/28/22 19:53	1

Client Sample Results

Client: Colorado Springs Utilities Project/Site: Radiochemistry Analysis

Client Sample ID: 468320 FC_1 Date Collected: 03/14/22 09:18

Ba Carrier

75.1

40 - 110

Date Collected: 03/1 Date Received: 03/1									Matrix	: Water
Method: Ra226_Ra	a228 - Con	ibined Rad			-228					
			Count	Total						
			Uncert.	Uncert.						
Analyte		Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC		Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.54		0.440	0.455	5.00	0.573	pCi/L		04/12/22 21:38	
lient Sample ID	: 468321	FC 2						Lab Sample	e ID: 160-44	875-3
Date Collected: 03/1									Matrix	
Date Received: 03/1										
Method: 903.0 - Ra	adium-226	(GEPC)								
		(0110)	Count	Total						
			Uncert.	Uncert.						
Analyte	Paquit	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fa
Radium-226	0.302		0.155	0.158		0.182		<u> </u>	-	
Radium-226	0.302		0.155	0.156	1.00	0.102	poi/L	03/10/22 13.14	04/11/22 20.11	I
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	75.1		40 - 110					03/18/22 13:14	04/11/22 20:11	1
Method: 904.0 - Ra	dium-228	(GFPC)								
		(011-0)	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2 σ +/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.354		0.377	0.378	1.00	0.615		03/18/22 13:41	04/06/22 12:23	1
Carrier		Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	75.1		40 - 110					03/18/22 13:41	04/06/22 12:23	1
Y Carrier	82.2		40 - 110					03/18/22 13:41	04/06/22 12:23	1
Method: Ra226_Ra	a228 - Com	bined Rad	dium-226 a	nd Radium	-228					
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2 σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.656		0.408	0.410	5.00	0.615	pCi/L		04/12/22 21:37	1
Client Sample ID): 468322	FC 3A						Lab Sample	D: 160-44	875-4
ate Collected: 03/1								•	Matrix	
Date Received: 03/1										
Method: 903.0 - Ra	adium-226	(GEPC)								
		(3110)	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.113		0.0898	0.0904	1.00	0.125		03/18/22 13:14		
Carrier	% Viald	Qualifier	Limits					Prepared	Analyzod	Dil Fac
	76 field	Quaiiiiei						<u> </u>	Analyzed	Dii Fac

03/18/22 13:14 04/11/22 21:43

Eurofins St. Louis

Job ID: 160-44875-1

4 5 6

7 8 9

Lab Sample ID: 160-44875-2

1

Matrix: Water

5

9

Lab Sample ID: 160-44875-4

Client Sample ID: 468322 FC 3A Date Collected: 03/14/22 15:23 Date Received: 03/17/22 09:05

Method: 904.0 - F	Radium-228	(GFPC)								
		. ,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2 σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.334	U *	0.336	0.337	1.00	0.545	pCi/L	03/18/22 13:41	04/06/22 12:23	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	75.1		40 - 110					03/18/22 13:41	04/06/22 12:23	1
Y Carrier	75.5		40 - 110					03/18/22 13:41	04/06/22 12:23	1

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC U	Jnit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.448	U	0.348	0.349	5.00	0.545 p	Ci/L		04/12/22 21:37	1
+ 228										

Client Sample ID: 468323 FC_3B Date Collected: 03/14/22 14:14 Date Received: 03/17/22 09:05

Method: 903.0 - Radium-226 (GFPC) Count Total Uncert. Uncert. Analyte **Result Qualifier** (2**σ**+/-) (2**σ**+/-) RL MDC Unit Prepared Analyzed Dil Fac Radium-226 0.352 0.136 0.140 1.00 0.153 pCi/L 03/18/22 13:14 04/11/22 20:14 1 Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac 40 - 110 03/18/22 13:14 04/11/22 20:14 Ba Carrier 90.4 1

Method: 904.0 - Radium-228 (GFPC)

Anabita	Decult	Qualifian	Count Uncert.	Total Uncert.		MDO	11 14	Durananad	Amelyneed	
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.856	*	0.317	0.327	1.00	0.436	pCi/L	03/18/22 13:41	04/06/22 12:23	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	90.4		40 - 110					03/18/22 13:41	04/06/22 12:23	1
Y Carrier	80.7		40 - 110					03/18/22 13:41	04/06/22 12:23	1

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC U	Jnit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.21		0.345	0.356	5.00	0.436 p	oCi/L		04/12/22 21:37	1

Eurofins St. Louis

Lab Sample ID: 160-44875-5 **Matrix: Water**

Total

Uncert.

(2**σ**+/-)

0.323

Total

Uncert.

(2**σ**+/-)

1.88

RL

1.00

RL

1.00

MDC Unit

0.429 pCi/L

MDC Unit

3.03 pCi/L

Count Uncert.

(20+/-)

Limits

40 - 110

Count

Uncert.

(2**σ**+/-)

Limits

40 - 110

40 - 110

1.87

0.319

Client Sample ID: 468325 SC 10 Date Collected: 03/15/22 09:21 Date Received: 03/17/22 09:05

Method: 903.0 - Radium-226 (GFPC)

Method: 904.0 - Radium-228 (GFPC)

Analyte

Carrier

Analyte

Carrier

Ba Carrier

Y Carrier

Radium-228

Ba Carrier

Radium-226

Job ID: 1	60-44875-1

03/18/22 13:14 04/11/22 20:14

03/18/22 13:14 04/11/22 20:14

04/07/22 13:33 04/11/22 16:02

04/07/22 13:33 04/11/22 16:02

04/07/22 13:33 04/11/22 16:02

Lab Sample ID: 160-44875-7

Matrix: Water

Prepared

Prepared

Prepared

Prepared

Lab Sample ID: 160-44875-6

Analyzed

Analyzed

Analyzed

Analyzed

Matrix:	Water	ာ
		4
		5
lyzed 22 20:14	Dil Fac	6
lyzed	Dil Fac	7
22 20:14	1	8
		9
lyzed	Dil Fac	10
22 16:02	1	4.4
lyzed	Dil Fac	
22 16:02	1	12
00 16.00	1	

Method: Ra226 Ra228 - Combined Radium-226 and Radium-228

Result Qualifier

%Yield Qualifier

Result Qualifier

%Yield Qualifier

23.9 X

82.2

1.92 U G

0.548

61.1

			Count	Total					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	2.47	U	1.90	1.91	5.00	3.03 pCi/L		04/12/22 21:37	1
+ 228									

Client Sample ID: 468326 SC_13 Date Collected: 03/15/22 13:19

Date Received: 03/17/22 09:05

Method: 903.0 - Radium-226 (GFPC)

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0610	U	0.0925	0.0926	1.00	0.159	pCi/L	03/18/22 13:14	04/11/22 20:15	1
Carrier Ba Carrier	% Yield 82.3	Qualifier	Limits 40 - 110					Prepared 03/18/22 13:14	Analyzed 04/11/22 20:15	Dil Fac

Method: 904.0 - Radium-228 (GFPC)

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2 σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.122	U *	0.330	0.330	1.00	0.567	pCi/L	03/18/22 13:41	04/06/22 12:24	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	82.3		40 - 110					03/18/22 13:41	04/06/22 12:24	1
Y Carrier	79.3		40 - 110					03/18/22 13:41	04/06/22 12:24	1

Client Sample Results

Client: Colorado Springs Utilities Project/Site: Radiochemistry Analysis

Client Sample ID: 468326 SC_13 Date Collected: 03/15/22 13:19 Date Received: 03/17/22 09:05

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.183	U	0.343	0.343	5.00	0.567	pCi/L		04/12/22 21:37	1

Client Sample ID: 468327 SC_14 Date Collected: 03/15/22 14:23 Date Received: 03/17/22 09:05

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.103	U	0.0917	0.0922	1.00	0.139	pCi/L	03/18/22 13:14	04/11/22 20:15	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	88.4		40 - 110					03/18/22 13:14	04/11/22 20:15	1

Method: 904.0 - Radium-228 (GFPC)

		o	Uncert.	Uncert.	-			- .		
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.278	U *	0.263	0.264	1.00	0.424	pCi/L	03/18/22 13:41	04/06/22 12:24	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	88.4		40 - 110					03/18/22 13:41	04/06/22 12:24	1
Y Carrier	83.7		40 - 110					03/18/22 13:41	04/06/22 12:24	1

Total

Count

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2 σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.381	U	0.279	0.280	5.00	0.424	pCi/L		04/12/22 21:37	1

Client Sample ID: 468328 SC_11 Date Collected: 03/15/22 10:29

Lab Sample ID: 160-44875-9 **Matrix: Water**

Job ID: 160-44875-1

Matrix: Water

Matrix: Water

9

Lab Sample ID: 160-44875-7

Date Received: 03/17/22 09:05

Method: 903.0 - Radium-226 (GFPC)

		(,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.151	U	0.125	0.126	1.00	0.184	pCi/L	03/18/22 13:14	04/11/22 20:15	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	82.3		40 - 110					03/18/22 13:14	04/11/22 20:15	1

Lab Sample ID: 160-44875-9 Client Sample ID: 468328 SC 11 Date Collected: 03/15/22 10:29 Matrix: Water Date Received: 03/17/22 09:05 Method: 904.0 - Radium-228 (GFPC) Count Total Uncert. Uncert. Analyte **Result Qualifier** (2σ+/-) (2σ+/-) RL MDC Unit Prepared Analyzed Dil Fac Radium-228 0.962 0.503 0.511 1.00 0.764 pCi/L 03/18/22 13:41 04/06/22 12:24 Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac Ba Carrier 82.3 40 - 110 03/18/22 13:41 04/06/22 12:24 1 83.0 40 - 110 03/18/22 13:41 04/06/22 12:24 Y Carrier 1 Method: Ra226_Ra228 - Combined Radium-226 and Radium-228 Total Count Uncert. Uncert. Result Qualifier (2**σ**+/-) (2σ+/-) MDC Unit Analyte RL Prepared Analyzed Dil Fac **Combined Radium** 0.518 0.526 5.00 0.764 pCi/L 04/12/22 21:37 1.11 1 226 + 228Client Sample ID: 468329 SC 12 Lab Sample ID: 160-44875-10 Date Collected: 03/15/22 12:11 Matrix: Water Date Received: 03/17/22 09:05 Method: 903.0 - Radium-226 (GFPC) Count Total Uncert. Uncert. Analyte **Result Qualifier** (2σ+/-) (2σ+/-) RL MDC Unit Prepared Analyzed Dil Fac Radium-226 0.110 U 0.124 0.124 1.00 0.201 pCi/L 03/18/22 13:14 04/11/22 20:16 1 Carrier Qualifier Limits Prepared Dil Fac %Yield Analyzed Ba Carrier 82.8 40 - 110 03/18/22 13:14 04/11/22 20:16 1 Method: 904.0 - Radium-228 (GFPC) Count Total Uncert. Uncert. Analyte **Result Qualifier** (2σ+/-) (2σ+/-) RL MDC Unit Prepared Analyzed Dil Fac Radium-228 -0.152 U* 0.279 0.279 1.00 0.522 pCi/L 03/18/22 13:41 04/06/22 12:25 1 Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac 03/18/22 13:41 04/06/22 12:25 Ba Carrier 82.8 40 - 110 1 03/18/22 13:41 04/06/22 12:25 40 - 110 Y Carrier 78.9 1 Method: Ra226 Ra228 - Combined Radium-226 and Radium-228 Total Count

			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2 σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	-0.0421	U	0.305	0.305	5.00	0.522	pCi/L		04/12/22 21:37	1
+ 228										

Eurofins St. Louis

Client Sample ID: 468330 SC_11 Date Collected: 03/15/22 10:29 Date Received: 03/17/22 09:05

Lab Sample ID: 160-44875-11

Matrix: Water

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.100	U	0.128	0.128	1.00	0.212	pCi/L	03/18/22 13:14	04/11/22 20:16	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	78.3		40 - 110					03/18/22 13:14	04/11/22 20:16	1

			Count Uncert.	Total Uncert.							
Analyte	Result	Qualifier	(2 σ+/-)	(2 σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac	
Radium-228	0.451	U *	0.424	0.426	1.00	0.686	pCi/L	03/18/22 13:41	04/06/22 12:25	1	
Carrier	%Yield	Qualifier	Limits					Prepared	Analvzed	Dil Fac	
Ba Carrier	78.3		40 - 110					03/18/22 13:41	04/06/22 12:25	1	
Y Carrier	83.0		40 - 110					03/18/22 13:41	04/06/22 12:25	1	

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2 σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.551	U	0.443	0.445	5.00	0.686	pCi/L		04/12/22 21:37	1

QC Sample Results

Job ID: 160-44875-1

10

Method: 903.0 - Radium-226 (GFPC)

Lab Sample II Matrix: Water		60-5559	008/23-A						Clie	ent Samp	Die ID: Meth	
		00									Prep Type:	
Analysis Bato	;n: 5597	99		0	Tatal						Prep Batch	: 555
		МВ	МВ	Count Uncert.	Total Uncert.							
Analuta						ы	MDC	Unit	Б	ropored	Apolyzod	
Analyte			Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC			repared	Analyzed	Di
Radium-226		0.07167		0.0532	0.0536	1.00	0.0713	pCi/L	03/1	18/22 10:28	04/11/22 20:0	6
O a mui a m			MB	1 : :4							A	
Carrier		97.8	Qualifier	Limits 40 - 110						Prepared	Analyzed 04/11/22 20:0	
Ba Carrier		97.0		40 - 110					03/1	10/22 10.20	04/11/22 20.0	0
Lab Sample II	D: LCS	1 <mark>60-555</mark>	908/1-A					Cli	ent Sai	mple ID:	Lab Contro	
Matrix: Water											Prep Type:	
Analysis Bato	:h: 5597	'99									Prep Batch	: 555
			• "			Total						
A A			Spike		LCS	Uncert.	.		11-24	0/	%Rec	
Analyte			Added	Result	Qual	<u>(2σ+/-)</u>	RL	MDC		%Rec	Limits	
Radium-226			11.3	9.736		1.01	1.00	0.0740	pCi/L	86	75 - 125	
	LCS											
Carrier		Qualifier		_								
Ba Carrier	93.6		40 - 110									
_ab Sample II	D: MB 1	60-5559	27/15-A						Clie	ent Samp	ole ID: Meth	od B
/latrix: Water											Prep Type:	Tota
Analysis Bato	ch: 5597	' 91									Prep Batch	
-				Count	Total							
		MB	МВ	Uncert.	Uncert.							
Analyte		Result	Qualifier	(2 σ+/-)	(2 σ+/-)	RL	MDC	Unit	Р	repared	Analyzed	Di
Radium-226		0.03232	U	0.0688	0.0688	1.00	0.124	pCi/L	03/1	8/22 13:14	04/11/22 20:1	2
		MB	МВ									
Carrier		%Yield	Qualifier	Limits					Р	Prepared	Analyzed	D
Ba Carrier		95.8		40 - 110							04/11/22 20:1	
Lab Sample II		160 555	007/4 4					CI	ant Sa		Lab Contro	
Matrix: Water		100-333	521/1-A					CIII	ent Sa	inple iD.	Prep Type:	
Analysis Bato		00									Prep Batch	
Analysis Date	,11. 3337	33				Total					Fiep Datci	. 550
			Spike	201	LCS	Uncert.					%Rec	
			Added	Result		(2σ+/-)	RL	MDC	Unit	%Rec	Limits	
∆nalvte				10.87		1.16	1.00	0.117			75 - 125	
			11.0	10.07				0.117	P0"L	00	10-120	
		100										
Radium-226	LCS											
Radium-226 Carrier	%Yield	Qualifier		-								
Radium-226 Carrier Ba Carrier	% Yield 90.6	Qualifier	40 - 110	-								
Radium-226 Carrier Ba Carrier Lab Sample II	%Yield 90.6 D: LCSE	Qualifier	40 - 110	-				Client S	ample	ID: Lab	Control San	-
Radium-226 Carrier Ba Carrier Lab Sample II Matrix: Water	%Yield 90.6 D: LCSE	Qualifier	40 - 110	-				Client S	ample	ID: Lab	Prep Type:	Tota
Radium-226 Carrier Ba Carrier Lab Sample II Matrix: Water	%Yield 90.6 D: LCSE	Qualifier	40 - 110	-				Client S	ample	ID: Lab		Tota
Analyte Radium-226 Carrier Ba Carrier Lab Sample II Matrix: Water Analysis Bato	%Yield 90.6 D: LCSE	Qualifier	40 - 110			Total		Client S	ample	ID: Lab	Prep Type: Prep Batch	Tota
Radium-226 Carrier Ba Carrier Lab Sample II Matrix: Water	%Yield 90.6 D: LCSE	Qualifier	40 - 110		LCSD	Total Uncert. (2σ+/-)	RL	Client S		ID: Lab	Prep Type: Prep Batch %Rec	Tota

QC Sample Results

10

Method: 903.0 - Radium-226 (GFPC) (Continued)

Lab Sample ID Matrix: Water Analysis Batc			5927/2-A					Client S	ample	ID: Lab	Control Samp Prep Type: To Prep Batch:	otal/NA
	LCSD	LCSD										
Carrier	%Yield	Qualifier	Limits									
Ba Carrier	96.1		40 - 110	-								
lethod: 904.	0 - Ra	dium-2	228 (GFPC)								
Lab Sample ID): MB 1	60-5559	26/23-A						Clie	nt Sam	ole ID: Method	d Blani
Matrix: Water											Prep Type: To	
Analysis Batc	h: 5574	11									Prep Batch:	55592
				Count	Total							
		MB		Uncert.	Uncert.				_			
Analyte			Qualifier	<u>(2σ+/-)</u>	(2σ+/-)	RL	MDC			epared	Analyzed	Dil Fa
Radium-228		0.2216	U	0.208	0.209	1.00	0.334	pCi/L	03/18	8/22 13:09	03/28/22 19:53	
. .		MB							_	<u>.</u>		
Carrier			Qualifier	Limits						repared	Analyzed 03/28/22 19:53	Dil Fa
Ba Carrier Y Carrier		97.8 82.2		40 - 110 40 - 110							03/28/22 19:53	
r Carrier		02.2		40 - 110					03/10	5/22 13.09	03/20/22 19.03	
Lab Sample ID Matrix: Water Analysis Batc			926/1-A					Clie	ent San	nple ID:	Lab Control S Prep Type: To Prep Batch:	otal/N
,, ,						Total						
			Spike	LCS	LCS	Uncert.					%Rec	
Analyte												
/ analyto			Added	Result	Qual	(2σ+/-)	RL	MDC	Unit	%Rec	Limits	
			Added 0.876	0.6669	Qual	(2σ+/-) 0.266	RL 1.00	0.343		%Rec 76	75 - 125	
	LCS	LCS			Qual	<u> </u>				· ·		
Radium-228	LCS %Yield		0.876		Qual	<u> </u>				· ·		
Radium-228		LCS Qualifier	0.876		Qual	<u> </u>				· ·		
Radium-228 Carrier Ba Carrier	%Yield		0.876		Qual	<u> </u>				· ·		
Radium-228 Carrier Ba Carrier Y Carrier	% Yield 93.6 78.9	Qualifier	0.876 Limits 40 - 110 40 - 110		Qual	<u> </u>			pCi/L	76	75 - 125	
Radium-228 Carrier Ba Carrier Y Carrier Lab Sample ID	% Yield 93.6 78.9	Qualifier	0.876 Limits 40 - 110 40 - 110		Qual	<u> </u>			pCi/L	76	75-125	
Radium-228 Carrier Ba Carrier Y Carrier Lab Sample ID Matrix: Water	%Yield 93.6 78.9 D: MB 10	Qualifier	0.876 Limits 40 - 110 40 - 110		Qual	<u> </u>			pCi/L	76	75-125 Die ID: Methoo Prep Type: To	otal/N/
Radium-228 Carrier Ba Carrier Y Carrier Lab Sample ID Matrix: Water	%Yield 93.6 78.9 D: MB 10	Qualifier	0.876 Limits 40 - 110 40 - 110	0.6669		<u> </u>			pCi/L	76	75-125	otal/N/
Radium-228 Carrier Ba Carrier Y Carrier Lab Sample ID Matrix: Water	%Yield 93.6 78.9 D: MB 10	<u>Qualifier</u> 60-5559 44	0.876 Limits 40 - 110 40 - 110 28/15-A	0.6669	Total	<u> </u>			pCi/L	76	75-125 Die ID: Methoo Prep Type: To	otal/N/
Radium-228 Carrier Ba Carrier Y Carrier Lab Sample ID Matrix: Water Analysis Batc	%Yield 93.6 78.9 D: MB 10	Qualifier 60-5559 44 MB	0.876 Limits 40 - 110 40 - 110 28/15-A	Count Uncert.	Total Uncert.	0.266	1.00	0.343	pCi/L Clie	76	75-125 Die ID: Methoo Prep Type: To Prep Batch:	otal/N/ 555928
Radium-228 <i>Carrier</i> Y <i>Carrier</i> Lab Sample ID Matrix: Water Analysis Batc Analyte	%Yield 93.6 78.9 D: MB 10	Qualifier 60-5559 44 MB Result	0.876 <u>Limits</u> 40 - 110 40 - 110 28/15-A MB Qualifier	0.6669 Count Uncert. (2σ+/-)	Total Uncert. (2σ+/-)	0.266	1.00	0.343 Unit	pCi/L Clie	76 nt Samp	75-125 Die ID: Methoo Prep Type: To Prep Batch: Analyzed	otal/N/ 555928 Dil Fa
Radium-228 <i>Carrier</i> <i>Ba Carrier</i> Y <i>Carrier</i> Lab Sample ID Matrix: Water Analysis Batc Analyte Radium-228	%Yield 93.6 78.9 D: MB 10	Qualifier 60-5559 44 MB Result 0.01377	0.876 Limits 40 - 110 40 - 110 28/15-A MB Qualifier U	Count Uncert.	Total Uncert.	0.266	1.00	0.343	pCi/L Clie	76 nt Samp	75-125 Die ID: Methoo Prep Type: To Prep Batch:	otal/N/ 55592 Dil Fa
Radium-228 Carrier Ba Carrier Y Carrier Lab Sample ID Matrix: Water Analysis Batc Analyte Radium-228	%Yield 93.6 78.9 D: MB 10	Qualifier 60-5559 44 Result 0.01377 <i>MB</i>	0.876 Limits 40 - 110 40 - 110 28/15-A MB Qualifier U MB	0.6669 Count Uncert. (2σ+/-) 0.222	Total Uncert. (2σ+/-)	0.266	1.00	0.343 Unit	pCi/L Clie Pr 03/18	76 nt Samp repared 3/22 13:41	75-125 Die ID: Methoo Prep Type: To Prep Batch: <u>Analyzed</u> 04/06/22 12:25	otal/N/ 55592 Dil Fa
Radium-228 Carrier Ba Carrier Y Carrier Lab Sample ID Matrix: Water Analysis Batc Analyte Radium-228 Carrier	%Yield 93.6 78.9 D: MB 10	Qualifier 60-5559 44 Result 0.01377 <i>MB</i> %Yield	0.876 Limits 40 - 110 40 - 110 28/15-A MB Qualifier U	0.6669 Count Uncert. (2σ+/-) 0.222 Limits	Total Uncert. (2σ+/-)	0.266	1.00	0.343 Unit	pCi/L Clie Pr 03/18 	repared 3/22 13:41	75-125 Die ID: Methoo Prep Type: To Prep Batch: Maalyzed 04/06/22 12:25 Analyzed	otal/N/ 55592 Dil Fa
Radium-228 Carrier Ba Carrier Y Carrier Lab Sample ID Matrix: Water Analysis Batc Analyte Radium-228 Carrier Ba Carrier	%Yield 93.6 78.9 D: MB 10	Qualifier 60-5559 44 MB Result 0.01377 MB %Yield 95.8	0.876 Limits 40 - 110 40 - 110 28/15-A MB Qualifier U MB	0.6669 Count Uncert. (2σ+/-) 0.222 Limits 40 - 110	Total Uncert. (2σ+/-)	0.266	1.00	0.343 Unit	Pr 03/18 03/18	76 nt Samp 3/22 13:41 repared 8/22 13:41	75-125 Die ID: Method Prep Type: To Prep Batch: <u>Analyzed</u> 04/06/22 12:25 <u>Analyzed</u> 04/06/22 12:25	otal/N/ 55592 Dil Fa
Radium-228 Carrier Ba Carrier Y Carrier Lab Sample ID Matrix: Water Analysis Batc Analyte Radium-228 Carrier Ba Carrier	%Yield 93.6 78.9 D: MB 10	Qualifier 60-5559 44 Result 0.01377 <i>MB</i> %Yield	0.876 Limits 40 - 110 40 - 110 28/15-A MB Qualifier U MB	0.6669 Count Uncert. (2σ+/-) 0.222 Limits	Total Uncert. (2σ+/-)	0.266	1.00	0.343 Unit	Pr 03/18 03/18	76 nt Samp 3/22 13:41 repared 8/22 13:41	75-125 Die ID: Method Prep Type: To Prep Batch: Maalyzed 04/06/22 12:25 Analyzed	otal/N/ 55592 Dil Fa
Radium-228 Carrier Ba Carrier Y Carrier Lab Sample ID Matrix: Water Analysis Batc Analyte Radium-228 Carrier Ba Carrier Y Carrier Y Carrier	%Yield 93.6 78.9 D: MB 10 h: 5587	Qualifier 60-5559 44 MB Result 0.01377 <i>MB</i> %Yield 95.8 80.7	0.876 <u>Limits</u> 40 - 110 40 - 110 28/15-A MB Qualifier U MB Qualifier	0.6669 Count Uncert. (2σ+/-) 0.222 Limits 40 - 110	Total Uncert. (2σ+/-)	0.266	1.00	0.343 Unit pCi/L	PCi/L Clie 03/18 03/18	76 nt Samp 3/22 13:41 repared 8/22 13:41	75-125 Die ID: Method Prep Type: To Prep Batch: <u>Analyzed</u> 04/06/22 12:25 <u>Analyzed</u> 04/06/22 12:25	otal/N/ 55592 Dil Fa Dil Fa
Radium-228 Carrier Ba Carrier Y Carrier Lab Sample ID Matrix: Water Analysis Batc Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample ID	%Yield 93.6 78.9 D: MB 10 h: 5587	Qualifier 60-5559 44 MB Result 0.01377 <i>MB</i> %Yield 95.8 80.7	0.876 <u>Limits</u> 40 - 110 40 - 110 28/15-A MB Qualifier U MB Qualifier	0.6669 Count Uncert. (2σ+/-) 0.222 Limits 40 - 110	Total Uncert. (2σ+/-)	0.266	1.00	0.343 Unit pCi/L	PCi/L Clie 03/18 03/18	76 nt Samp 3/22 13:41 7epared 8/22 13:41 8/22 13:41 8/22 13:41 nple ID:	75-125 Die ID: Method Prep Type: To Prep Batch: <u>Analyzed</u> 04/06/22 12:25 <u>Analyzed</u> 04/06/22 12:25 04/06/22 12:25	otal/N/ 55592 Dil Fa Dil Fa
Radium-228 Carrier Ba Carrier Y Carrier Lab Sample ID Matrix: Water Analysis Batc Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample ID Matrix: Water	%Yield 93.6 78.9 D: MB 10 h: 5587	Qualifier 60-5559 44 MB Result 0.01377 MB %Yield 95.8 80.7 160-555	0.876 <u>Limits</u> 40 - 110 40 - 110 28/15-A MB Qualifier U MB Qualifier	0.6669 Count Uncert. (2σ+/-) 0.222 Limits 40 - 110	Total Uncert. (2σ+/-)	0.266	1.00	0.343 Unit pCi/L	PCi/L Clie 03/18 03/18	76 nt Samp 3/22 13:41 7epared 8/22 13:41 8/22 13:41 8/22 13:41 nple ID:	75-125	otal/N/ 55592 Dil Fa Dil Fa Sample otal/N/
Radium-228 Carrier Ba Carrier Y Carrier Lab Sample ID Matrix: Water Analysis Batc Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample ID Matrix: Water	%Yield 93.6 78.9 D: MB 10 h: 5587	Qualifier 60-5559 44 MB Result 0.01377 MB %Yield 95.8 80.7 160-555	0.876 <u>Limits</u> 40 - 110 40 - 110 28/15-A MB Qualifier U MB Qualifier	0.6669 Count Uncert. (2σ+/-) 0.222 Limits 40 - 110	Total Uncert. (2σ+/-)	0.266	1.00	0.343 Unit pCi/L	PCi/L Clie 03/18 03/18	76 nt Samp 3/22 13:41 7epared 8/22 13:41 8/22 13:41 8/22 13:41 nple ID:	75-125 Die ID: Method Prep Type: To Prep Batch: <u>Analyzed</u> 04/06/22 12:25 <u>Analyzed</u> 04/06/22 12:25 Lab Control S Prep Type: To	otal/N/ 555923 Dil Fa Dil Fa Samplo otal/N/
Radium-228 <i>Carrier</i> Y Carrier Lab Sample ID Matrix: Water Analysis Batc Analyte	%Yield 93.6 78.9 D: MB 10 h: 5587	Qualifier 60-5559 44 MB Result 0.01377 MB %Yield 95.8 80.7 160-555	0.876 <u>Limits</u> 40 - 110 40 - 110 28/15-A MB Qualifier U MB Qualifier	0.6669 Count Uncert. (2σ+/-) 0.222 Limits 40 - 110 40 - 110	Total Uncert. (2σ+/-)	0.266	1.00	0.343 Unit pCi/L	PCi/L Clie 03/18 03/18	76 nt Samp 3/22 13:41 7epared 8/22 13:41 8/22 13:41 8/22 13:41 nple ID:	75-125 Die ID: Method Prep Type: To Prep Batch: <u>Analyzed</u> 04/06/22 12:25 <u>Analyzed</u> 04/06/22 12:25 Lab Control S Prep Type: To	otal/N/ 555928 Dil Fac Dil Fac Dil Fac
Radium-228 Carrier Ba Carrier Y Carrier Lab Sample ID Matrix: Water Analysis Batc Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample ID Matrix: Water	%Yield 93.6 78.9 D: MB 10 h: 5587	Qualifier 60-5559 44 MB Result 0.01377 MB %Yield 95.8 80.7 160-555	0.876 Limits 40 - 110 40 - 110 028/15-A MB Qualifier U MB Qualifier 928/1-A	0.6669 Count Uncert. (2σ+/-) 0.222 Limits 40 - 110 40 - 110	Total Uncert. (2σ+/-) 0.222	0.266	1.00	0.343 Unit pCi/L	PCi/L Clie O3/18 03/18 03/18 03/18 03/18 03/18	76 nt Samp 3/22 13:41 7epared 8/22 13:41 8/22 13:41 8/22 13:41 nple ID:	75-125 Die ID: Method Prep Type: To Prep Batch: <u>Analyzed</u> 04/06/22 12:25 04/06/22 12:25 04/06/22 12:25 Lab Control S Prep Type: To Prep Batch:	otal/N. 55592 Dil Fa Dil Fa Sampl otal/N.

QC Sample Results

ontrol Sample Type: Total/NA Batch: 555928 ol Sample Dup Type: Total/NA Batch: 555928

10

Mothod: 00		•	-		tipued)								
Method: 904				Con	tinued)								
Lab Sample Matrix: Wate Analysis Bat	r		928/1-A					Cli	ent Sa	mple ID:	Lab Con Prep Typ Prep Ba	be: Tot	tal/NA
,,													
Carrier		LCS Qualifier	Limits										
Ba Carrier	90.6	Quaimer	<u>40 - 110</u>	_									
Y Carrier	83.4		40 - 110										
Lab Sample	ID: LCSI	D 160-55	5928/2-A					Client S	Sample	ID: Lab	Control S	Sample	e Dup
Matrix: Wate	r										Prep Typ		
Analysis Bat	tch: 5587	29				Total					Prep Ba	tch: 5	55928
			Spike	LCSD	LCSD	Uncert.					%Rec		RER
Analyte			Added	Result		(2 σ +/-)	RL	MDC	Unit	%Rec	Limits	RER	Limit
Radium-228			0.873	0.7173		0.266	1.00	0.340	pCi/L	82	75 - 125	0.88	1
	1000	LCSD											
Carrier		Qualifier	Limits										
Ba Carrier	<u></u>	Quaimer	40 - 110	-									
Y Carrier	83.0		40 - 110										
Lab Sample	ID: MB 1	60-5591	20/10-A						Clie	ent Sam	ole ID: Me	thod	Blank
Matrix: Wate	r										Prep Typ	be: Tot	tal/NA
Analysis Bat	tch: 5597	799									Prep Ba	tch: 5	59120
				Count	Total								
		MB		Uncert.	Uncert.				_				
Analyte			Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC			Prepared	Analyz		Dil Fac
Radium-228		0.01386	U	0.201	0.201	1.00	0.362	pCI/L	04/0)//22 14:49	04/11/22	16:02	1
		MB	МВ										
Carrier			Qualifier	Limits						Prepared	Analyz		Dil Fac
Ba Carrier		97.8		40 - 110							04/11/22		1
Y Carrier		81.1		40 - 110					04/0)//22 14:49	04/11/22	16:02	1
Lab Sample	ID: LCS	1 <mark>60-55</mark> 9	120/1-A					Cli	ent Sa	mple ID:	Lab Con	trol Sa	ample
Matrix: Wate											Prep Typ		
Analysis Bat	tch: 5597	799									Prep Ba	tch: 5	59120
			Onilles	1.00	1.00	Total					0/ D		
Analyte			Spike Added	Result	LCS	Uncert. (2σ+/-)	RL	MDC	Unit	%Rec	%Rec Limits		
Radium-228				6.901	<u>u</u> uai	0.850	1.00		pCi/L	79	75 - 125		
			0.72	5.001		0.000	1.00	0.000	P 0 " L	70	10-120		
		LCS											
Carrier		Qualifier		_									
Ba Carrier	108		40 - 110 40 - 110										
Y Carrier	83.4		40 - 110										
Lab Sample	ID: LCSI	D 160-55	9120/2-A					Client S	Sample	ID: Lab	Control S	Sample	e Dup
Matrix: Wate	r										Prep Typ		
Analysis Bat	tch: 5597	799									Prep Ba	tch: 5	59120
						Total					a. –		
•			Spike		LCSD	Uncert.				e/ =	%Rec		RER
Analyte			Added	Result	Qual	<u>(2σ+/-)</u>			Unit	%Rec	Limits	RER	Limit
Radium-228			8.72	7.626		0.897	1.00	0.274	pCi/L	87	75 - 125	0.42	1
											Eurof	ins St.	Louis

lyzed Dil Fac 22 16:02 1

Prepared	Analyzed	Dil Fac
04/07/22 14:49	04/11/22 16:02	1
04/07/22 14:49	04/11/22 16:02	1

ontrol Sample Type: Total/NA Batch: 559120

				Total					
	Spike	LCS	LCS	Uncert.				%Rec	
Analyte	Added	Result	Qual	(2σ+/-)	RL	MDC Unit	%Rec	Limits	
Radium-228	8.72	6.901		0.850	1.00	0.356 pCi/L	79	75 - 125	

	LCS	LCS	
Carrier	%Yield	Qualifier	Limits
Ba Carrier	108		40 - 110
Y Carrier	83.4		40 - 110

Lab Sa Matrix Analy

10

Method: 904.0 - Radium-228 (GFPC) (Continued)

Matrix: Wa	e ID: LCSD 160-5591 ter atch: 559799	20/2-A	Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Prep Batch: 559120
	LCSD LCSD		
Carrier	%Yield Qualifier	Limits	
Ba Carrier	107	40 - 110	
Y Carrier	90.8	40 - 110	

Eurofins St. Louis

QC Association Summary

11 12

Rad

Prep	Batch:	555908
Γ		_

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
160-44875-1	468319 CC_1	Total/NA	Water	PrecSep-21	
160-44875-2	468320 FC_1	Total/NA	Water	PrecSep-21	
MB 160-555908/23-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-555908/1-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
Prep Batch: 555926					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
160-44875-1	468319 CC_1	Total/NA	Water	PrecSep_0	
160-44875-2	468320 FC_1	Total/NA	Water	PrecSep_0	
MB 160-555926/23-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-555926/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
rep Batch: 555927					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
160-44875-3	468321 FC_2	Total/NA	Water	PrecSep-21	
160-44875-4	468322 FC_3A	Total/NA	Water	PrecSep-21	
160-44875-5	468323 FC_3B	Total/NA	Water	PrecSep-21	
160-44875-6	468325 SC_10	Total/NA	Water	PrecSep-21	
160-44875-7	468326 SC_13	Total/NA	Water	PrecSep-21	
160-44875-8	468327 SC 14	Total/NA	Water	PrecSep-21	
160-44875-9		Total/NA	Water	PrecSep-21	
160-44875-10	468329 SC_12	Total/NA	Water	PrecSep-21	
160-44875-11	468330 SC 11	Total/NA	Water	PrecSep-21	
MB 160-555927/15-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-555927/1-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
LCSD 160-555927/2-A	Lab Control Sample Dup	Total/NA	Water	PrecSep-21	
Prep Batch: 555928					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
160-44875-3	468321 FC_2	Total/NA	Water	PrecSep_0	
160-44875-4	468322 FC_3A	Total/NA	Water	PrecSep_0	
160-44875-5	468323 FC_3B	Total/NA	Water	PrecSep_0	
160-44875-7	468326 SC_13	Total/NA	Water	PrecSep_0	
160-44875-8	468327 SC_14	Total/NA	Water	PrecSep_0	
160-44875-9	468328 SC_11	Total/NA	Water	PrecSep_0	
160-44875-10	468329 SC_12	Total/NA	Water	PrecSep_0	
160-44875-11	468330 SC_11	Total/NA	Water	PrecSep_0	
MB 160-555928/15-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-555928/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
LCSD 160-555928/2-A	Lab Control Sample Dup	Total/NA	Water	PrecSep_0	
rep Batch: 559120					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
160-44875-6	468325 SC_10	Total/NA	Water	PrecSep_0	
MB 160-559120/10-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-559120/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0	

Tracer/Carrier Summary

Client: Colorado Springs Utilities Project/Site: Radiochemistry Analysis

Method: 903.0 - Radium-226 (GFPC) Matrix: Water

468328 SC_11

468329 SC 12

468330 SC 11

Method Blank

Method Blank

Lab Control Sample

Lab Control Sample

Lab Control Sample Dup

Ва **Client Sample ID** (40-110) Lab Sample ID 160-44875-1 468319 CC 1 97.3 160-44875-2 468320 FC_1 95.6 160-44875-3 468321 FC 2 75.1 468322 FC 3A 160-44875-4 75.1 160-44875-5 468323 FC 3B 90.4 160-44875-6 468325 SC_10 61.1 160-44875-7 468326 SC 13 82.3 160-44875-8 468327 SC_14 88.4

82.3

82.8

78.3

93.6

90.6

96.1

978

95.8

Method: 904.0 - Radium-228 (GFPC)

Matrix: Water

160-44875-9

160-44875-10

160-44875-11

LCS 160-555908/1-A

LCS 160-555927/1-A

MB 160-555908/23-A

MB 160-555927/15-A

Tracer/Carrier Legend Ba = Ba Carrier

LCSD 160-555927/2-A

Percent Yield (Acceptance Limits) Ва Υ (40-110) (40-110) Lab Sample ID **Client Sample ID** 160-44875-1 468319 CC_1 97.3 80.7 160-44875-2 468320 FC 1 95.6 78.9 82.2 160-44875-3 468321 FC_2 75 1 160-44875-4 468322 FC 3A 75.5 75.1 160-44875-5 80.7 468323 FC_3B 90.4 160-44875-6 468325 SC_10 23.9 X 82.2 160-44875-7 468326 SC_13 82.3 79.3 160-44875-8 468327 SC 14 88.4 83.7 83.0 160-44875-9 468328 SC_11 82.3 160-44875-10 468329 SC_12 82.8 78.9 160-44875-11 468330 SC 11 78.3 83.0 LCS 160-555926/1-A Lab Control Sample 93.6 78.9 LCS 160-555928/1-A Lab Control Sample 90.6 83.4 83.4 LCS 160-559120/1-A Lab Control Sample 108 LCSD 160-555928/2-A Lab Control Sample Dup 96.1 83.0 LCSD 160-559120/2-A Lab Control Sample Dup 107 90.8 MB 160-555926/23-A Method Blank 97.8 82.2 MB 160-555928/15-A Method Blank 95.8 80.7 MB 160-559120/10-A Method Blank 97.8 81.1

Tracer/Carrier Legend

Ba = Ba Carrier

Y = Y Carrier

Prep Type: Total/NA

Percent Yield (Acceptance Limits)

12

Prep Type: Total/NA

Colorado Springs Utilities It's how we're all connected

Laboratory Report For:

Coal Combustion Residuals - Landfill

Colorado Springs Utilities Environmental Services

Report Authorized by: Wendy M Asay

Title: Environmental Specialist

Report Date: January 13, 2023 Revised to correct water levels that were recorded incorrectly on COC.

Report generated by: Wendy M. Asay

Colorado Springs Utilities Laboratory Services Section certifies that the test results meet all approved method and Laboratory Quality Assurance Plan requirements unless otherwise noted

Samples

474856	27-Sep-2022 14:06	Crooked Canyon Well #1
474857	27-Sep-2022 10:42	Fort Carson Well #1
474858	27-Sep-2022 11:56	Fort Carson Well #2
474859	27-Sep-2022 15:25	Fort Carson Well #3A
474860	27-Sep-2022 16:06	Fort Carson Well #3B
474861	27-Sep-2022 16:30	Equipment Blank
474862	26-Sep-2022 11:41	Sand Canyon Well #10
474863	26-Sep-2022 13:58	Sand Canyon Well #13
474864	26-Sep-2022 15:05	Sand Canyon Well #14
474865	26-Sep-2022 16:20	Sand Canyon Well #11
474866	26-Sep-2022 12:30	Sand Canyon Well #12
474867	26-Sep-2022 12:30	Sand Canyon Well #12

LIMS #: 474856 Sample Date: 9/27/2022 2:06:55 PM Sample Point: CC_1 Sample Point Description: Crooked Canyon Well #1 Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.1	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	14.1	degrees C	0.000			1	
+	SM_2510_B	Conductivity	24100	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	176	mV	0			1	
	SM_2130_B	Turbidity	12	NTU	0.05			1	
	NA	Depth to Water	15.36	ft.	0.0000			1	
	SM_2540_C	Total Dissolved Solids	35100	mg/L	10			1	
	SM_4500_FC	Fluoride (Total)	0.23	mg/L	0.10	Т	09/28/2022	1	
	EPA_300_0	Chloride	1680	mg/L	0.50	D	09/29/2022	1	
		Sulfate	20400	mg/L	0.50	D	09/29/2022	1	
	EPA_200_8	Antimony (Total Recoverable)	<0.50	ug/L	0.50	U1	10/04/2022	1	
		Arsenic (Total Recoverable)	18.2	ug/L	1.0	D	10/04/2022	1	
		Barium (Total Recoverable)	7.3	ug/L	0.20	D	10/04/2022	1	
		Beryllium (Total Recoverable)	<0.20	ug/L	0.20	U1/T/ISL	10/04/2022	1	
		Cadmium (Total Recoverable)	<0.50	ug/L	0.50	U1	10/04/2022	1	
		Chromium (Total Recoverable)	2.3	ug/L	1.0	U1	10/04/2022	1	
		Lead (Total Recoverable)	1.8	ug/L	0.50	D/ISL	10/04/2022	1	
		Molybdenum (Total Recoverable)	1.3	ug/L	0.20	D	10/04/2022	1	
		Selenium (Total Recoverable)	224	ug/L	1.0	D	10/04/2022	1	
		Thallium (Total Recoverable)	0.51	ug/L	0.50	U1/ISL	10/04/2022	1	
	EPA_200_7	Boron (Total Recoverable)	1000	ug/L	20.0		10/10/2022	1	
		Calcium (Total Recoverable)	377000	ug/L	100	D		1	
		Cobalt (Total Recoverable)	6.83	ug/L	5.00		10/10/2022	1	
		Lithium (Total Recoverable)	879	ug/L	10.0		10/10/2022	1	
	EPA_1631	Mercury (Total)	0.005	ug/L	0.002		10/13/2022	1	

LIMS #: 474857 Sample Date: 9/27/2022 10:42:55 AM Sample Point: FC_1 Sample Point Description: Fort Carson Well #1 Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
	EPA_1631	Mercury (Total)	0.002	ug/L	0.002		10/13/2022	1	
+	SM_4500HB	рН	7.3	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	14.2	degrees C	0.000			1	
+	SM_2510_B	Conductivity	18300	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	83	mV	0			1	
	SM_2130_B	Turbidity	0.75	NTU	0.05			1	
	NA	Depth to Water	17.00	ft.	0.0000			1	
	SM_2540_C	Total Dissolved Solids	21500	mg/L	10			1	
	SM_4500_FC	Fluoride (Total)	0.12	mg/L	0.10	т	09/28/2022	1	
	EPA_300_0	Chloride	770	mg/L	0.50	D	09/29/2022	1	
		Sulfate	12800	mg/L	0.50	D	09/29/2022	1	
	EPA_200_8	Antimony (Total Recoverable)	<0.50	ug/L	0.50	U1	10/04/2022	1	
		Arsenic (Total Recoverable)	4.9	ug/L	1.0	U1	10/04/2022	1	
		Barium (Total Recoverable)	9.3	ug/L	0.20	D	10/04/2022	1	
		Beryllium (Total Recoverable)	<0.20	ug/L	0.20	U1/T/ISL	10/04/2022	1	
		Cadmium (Total Recoverable)	<0.50	ug/L	0.50	U1	10/04/2022	1	
		Chromium (Total Recoverable)	1.2	ug/L	1.0	U1	10/04/2022	1	
		Lead (Total Recoverable)	<0.50	ug/L	0.50	U1/ISL	10/04/2022	1	
		Molybdenum (Total Recoverable)	2.1	ug/L	0.20	D	10/04/2022	1	
		Selenium (Total Recoverable)	17.6	ug/L	1.0	D	10/04/2022	1	
		Thallium (Total Recoverable)	<0.50	ug/L	0.50	U1/ISL	10/04/2022	1	
	EPA_200_7	Boron (Total Recoverable)	990	ug/L	20.0		10/10/2022	1	
		Calcium (Total Recoverable)	383000	ug/L	100	D		1	
		Cobalt (Total Recoverable)	<5.00	ug/L	5.00		10/10/2022	1	
		Lithium (Total Recoverable)	1190	ug/L	10.0		10/10/2022	1	

LIMS #: 474858 Sample Date: 9/27/2022 11:56:55 AM Sample Point: FC_2 Sample Point Description: Fort Carson Well #2 Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.5	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	13.7	degrees C	0.000			1	
+	SM_2510_B	Conductivity	8160	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	229	mV	0			1	
	SM_2130_B	Turbidity	8.0	NTU	0.05			1	
	NA	Depth to Water	14.80	ft.	0.0000			1	
	SM_2540_C	Total Dissolved Solids	10000	mg/L	10			1	
	SM_4500_FC	Fluoride (Total)	0.52	mg/L	0.10	Т	09/28/2022	1	
	EPA_300_0	Chloride	104	mg/L	0.50	D	09/29/2022	1	
		Sulfate	5920	mg/L	0.50	D	09/29/2022	1	
	EPA_200_8	Antimony (Total Recoverable)	<0.50	ug/L	0.50	U1	10/04/2022	1	
		Arsenic (Total Recoverable)	2.0	ug/L	1.0	U1	10/04/2022	1	
		Barium (Total Recoverable)	8.6	ug/L	0.20	D	10/04/2022	1	
		Beryllium (Total Recoverable)	<0.20	ug/L	0.20	U1/ISL/T	10/04/2022	1	
		Cadmium (Total Recoverable)	<0.50	ug/L	0.50	U1	10/04/2022	1	
		Chromium (Total Recoverable)	1.2	ug/L	1.0	U1	10/04/2022	1	
		Lead (Total Recoverable)	<0.50	ug/L	0.50	U1	10/04/2022	1	
		Molybdenum (Total Recoverable)	2.9	ug/L	0.20	D	10/04/2022	1	
		Selenium (Total Recoverable)	37.0	ug/L	1.0	D	10/04/2022	1	
		Thallium (Total Recoverable)	<0.50	ug/L	0.50	U1	10/04/2022	1	
	EPA_200_7	Boron (Total Recoverable)	988	ug/L	20.0		10/10/2022	1	
		Calcium (Total Recoverable)	408000	ug/L	100	D		1	
		Cobalt (Total Recoverable)	<5.00	ug/L	5.00		10/10/2022	1	
		Lithium (Total Recoverable)	300	ug/L	10.0		10/10/2022	1	
	EPA_1631	Mercury (Total)	0.007	ug/L	0.002		10/06/2022	1	

LIMS #: 474859 Sample Date: 9/27/2022 3:25:55 PM Sample Point: FC_3A Sample Point Description: Fort Carson Well #3A Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.5	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	14.0	degrees C	0.000			1	
+	SM_2510_B	Conductivity	7410	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	237	mV	0			1	
	SM_2130_B	Turbidity	86	NTU	0.05			1	
	NA	Depth to Water	19.88	ft.	0.0000			1	
	SM_4500_FC	Fluoride (Total)	0.46	mg/L	0.10	Т	09/28/2022	1	
	EPA_300_0	Chloride	130	mg/L	0.50	D	09/30/2022	1	
		Sulfate	5140	mg/L	0.50	D	09/29/2022	1	
	EPA_200_8	Antimony (Total Recoverable)	<0.50	ug/L	0.50	U1	10/04/2022	1	
		Arsenic (Total Recoverable)	3.7	ug/L	1.0	U1	10/04/2022	1	
		Barium (Total Recoverable)	14.9	ug/L	0.20	D	10/04/2022	1	
		Beryllium (Total Recoverable)	<0.20	ug/L	0.20	T/U1	10/04/2022	1	
		Cadmium (Total Recoverable)	<0.50	ug/L	0.50	U1	10/04/2022	1	
		Chromium (Total Recoverable)	1.5	ug/L	1.0	U1	10/04/2022	1	
		Lead (Total Recoverable)	<0.50	ug/L	0.50	U1	10/04/2022	1	
		Molybdenum (Total Recoverable)	7.0	ug/L	0.20	D	10/04/2022	1	
		Selenium (Total Recoverable)	51.2	ug/L	1.0	D	10/04/2022	1	
		Thallium (Total Recoverable)	<0.50	ug/L	0.50	U1	10/04/2022	1	
	EPA_200_7	Boron (Total Recoverable)	1060	ug/L	20.0		10/10/2022	1	
		Calcium (Total Recoverable)	418000	ug/L	100	D	10/13/2022	1	
		Cobalt (Total Recoverable)	<5.00	ug/L	5.00		10/10/2022	1	
		Lithium (Total Recoverable)	334	ug/L	10.0		10/10/2022	1	
	EPA_1631	Mercury (Total)	0.003	ug/L	0.002		10/06/2022	1	
	SM_2540_C	Total Dissolved Solids	9060	mg/L	10			1	

LIMS #: 474860 Sample Date: 9/27/2022 4:06:55 PM Sample Point: FC_3B Sample Point Description: Fort Carson Well #3B Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.7	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	14.3	degrees C	0.000			1	
+	SM_2510_B	Conductivity	7420	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	147	mV	0			1	
	SM_2130_B	Turbidity	21	NTU	0.05			1	
	NA	Depth to Water	21.91	ft.	0.0000			1	
	SM_4500_FC	Fluoride (Total)	0.48	mg/L	0.10	т	09/28/2022	1	
	EPA_200_8	Antimony (Total Recoverable)	<0.50	ug/L	0.50	U1	10/04/2022	1	
		Arsenic (Total Recoverable)	6.8	ug/L	1.0	U1	10/04/2022	1	
		Barium (Total Recoverable)	12.2	ug/L	0.20	D	10/04/2022	1	
		Beryllium (Total Recoverable)	<0.20	ug/L	0.20	U1/T	10/04/2022	1	
		Cadmium (Total Recoverable)	<0.50	ug/L	0.50	U1	10/04/2022	1	
		Chromium (Total Recoverable)	3.4	ug/L	1.0	U1	10/04/2022	1	
		Lead (Total Recoverable)	0.81	ug/L	0.50	U1	10/04/2022	1	
		Molybdenum (Total Recoverable)	2.3	ug/L	0.20	D	10/04/2022	1	
		Selenium (Total Recoverable)	6.2	ug/L	1.0	U1	10/04/2022	1	
		Thallium (Total Recoverable)	<0.50	ug/L	0.50	U1	10/04/2022	1	
	EPA_200_7	Boron (Total Recoverable)	1200	ug/L	20.0		10/10/2022	1	
		Calcium (Total Recoverable)	203000	ug/L	100	D		1	
		Cobalt (Total Recoverable)	<5.00	ug/L	5.00		10/10/2022	1	
		Lithium (Total Recoverable)	286	ug/L	10.0		10/10/2022	1	
	EPA_1631	Mercury (Total)	0.003	ug/L	0.002		10/06/2022	1	
	EPA_300_0	Chloride	200	mg/L	0.50	D	09/30/2022	1	
		Sulfate	4430	mg/L	0.50	D	09/30/2022	1	
	SM_2540_C	Total Dissolved Solids	6960	mg/L	10			1	

LIMS #: 474861 Sample Date: 9/27/2022 4:30:55 PM Sample Point: EQUIP_BLK Sample Point Description: Equipment Blank Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

ig Me	ethod	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor
SM	_2540_C	Total Dissolved Solids	<10	mg/L	10			1
SM_	_4500_FC	Fluoride (Total)	<0.10	mg/L	0.10	т	09/28/2022	1
EPA	A_300_0	Chloride	<0.50	mg/L	0.50		09/29/2022	1
		Sulfate	<0.50	mg/L	0.50		09/29/2022	1
EPA	4_200_8	Antimony (Total Recoverable)	<0.50	ug/L	0.50		10/04/2022	1
		Arsenic (Total Recoverable)	<1.0	ug/L	1.0		10/04/2022	1
		Barium (Total Recoverable)	<0.20	ug/L	0.20		10/04/2022	1
		Beryllium (Total Recoverable)	<0.20	ug/L	0.20	Т	10/04/2022	1
		Cadmium (Total Recoverable)	<0.50	ug/L	0.50		10/04/2022	1
		Chromium (Total Recoverable)	<1.0	ug/L	1.0		10/04/2022	1
		Lead (Total Recoverable)	<0.50	ug/L	0.50		10/04/2022	1
		Molybdenum (Total Recoverable)	<0.20	ug/L	0.20		10/04/2022	1
		Selenium (Total Recoverable)	<1.0	ug/L	1.0		10/04/2022	1
		Thallium (Total Recoverable)	<0.50	ug/L	0.50		10/04/2022	1
EPA	4_200_7	Boron (Total Recoverable)	<20.0	ug/L	20.0		10/10/2022	1
		Calcium (Total Recoverable)	<100	ug/L	100		10/10/2022	1
		Cobalt (Total Recoverable)	<5.00	ug/L	5.00		10/10/2022	1
		Lithium (Total Recoverable)	<10.0	ug/L	10.0		10/10/2022	1
EPA	A_1631	Mercury (Total)	<0.002	ug/L	0.002		10/06/2022	1

LIMS #: 474862 Sample Date: 9/26/2022 11:41:09 AM Sample Point: SC_10 Sample Point Description: Sand Canyon Well #10 Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.4	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	14.5	degrees C	0.000			1	
+	SM_2510_B	Conductivity	15000	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	242	mV	0			1	
	SM_2130_B	Turbidity	180	NTU	0.05			1	
	NA	Depth to Water	15.01	ft.	0.0000			1	
	SM_4500_FC	Fluoride (Total)	0.53	mg/L	0.10	Т	09/28/2022	1	
	EPA_300_0	Chloride	960	mg/L	0.50	D	09/30/2022	1	
		Sulfate	9170	mg/L	0.50	D	09/30/2022	1	
	EPA_200_8	Antimony (Total Recoverable)	<0.50	ug/L	0.50	U1	10/03/2022	1	
		Arsenic (Total Recoverable)	8.3	ug/L	1.0	D	10/03/2022	1	
		Barium (Total Recoverable)	43.6	ug/L	0.20	D	10/03/2022	1	
		Beryllium (Total Recoverable)	<0.20	ug/L	0.20	U1	09/30/2022	1	
		Cadmium (Total Recoverable)	<0.50	ug/L	0.50	U1	10/03/2022	1	
		Chromium (Total Recoverable)	7.3	ug/L	1.0	D	10/03/2022	1	
		Lead (Total Recoverable)	3.3	ug/L	0.50	D	10/03/2022	1	
		Molybdenum (Total Recoverable)	6.5	ug/L	0.20	D	10/03/2022	1	
		Selenium (Total Recoverable)	232	ug/L	1.0	D	10/03/2022	1	
		Thallium (Total Recoverable)	<0.50	ug/L	0.50	U1	10/03/2022	1	
	EPA_200_7	Boron (Total Recoverable)	1210	ug/L	20.0		09/30/2022	1	
		Calcium (Total Recoverable)	416000	ug/L	100	D/B1	09/30/2022	1	
		Cobalt (Total Recoverable)	<5.00	ug/L	5.00		09/30/2022	1	
		Lithium (Total Recoverable)	624	ug/L	10.0	D	09/30/2022	1	
	EPA_1631	Mercury (Total)	0.012	ug/L	0.002		10/06/2022	1	
	SM_2540_C	Total Dissolved Solids	16700	mg/L	10			1	

LIMS #: 474863 Sample Date: 9/26/2022 1:58:09 PM Sample Point: SC_13 Sample Point Description: Sand Canyon Well #13 Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.5	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	14.4	degrees C	0.000			1	
+	SM_2510_B	Conductivity	9630	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	222	mV	0			1	
	SM_2130_B	Turbidity	93	NTU	0.05			1	
	NA	Depth to Water	13.61	ft.	0.0000			1	
	SM_2540_C	Total Dissolved Solids	11200	mg/L	10			1	
	SM_4500_FC	Fluoride (Total)	0.78	mg/L	0.10	Т	09/28/2022	1	
	EPA_200_8	Antimony (Total Recoverable)	<0.50	ug/L	0.50	U1	10/03/2022	1	
		Arsenic (Total Recoverable)	<1.0	ug/L	1.0	U1	10/03/2022	1	
		Barium (Total Recoverable)	18.4	ug/L	0.20	D	10/03/2022	1	
		Beryllium (Total Recoverable)	<0.20	ug/L	0.20	U1	09/30/2022	1	
		Cadmium (Total Recoverable)	<0.50	ug/L	0.50	U1	10/03/2022	1	
		Chromium (Total Recoverable)	2.0	ug/L	1.0	U1	10/03/2022	1	
		Lead (Total Recoverable)	0.65	ug/L	0.50	U1	10/03/2022	1	
		Molybdenum (Total Recoverable)	3.8	ug/L	0.20	D	10/03/2022	1	
		Selenium (Total Recoverable)	23.9	ug/L	1.0	D	10/03/2022	1	
		Thallium (Total Recoverable)	<0.50	ug/L	0.50	U1	10/03/2022	1	
	EPA_200_7	Boron (Total Recoverable)	1560	ug/L	20.0		09/30/2022	1	
		Calcium (Total Recoverable)	378000	ug/L	100	D/B1	09/30/2022	1	
		Cobalt (Total Recoverable)	<5.00	ug/L	5.00		09/30/2022	1	
		Lithium (Total Recoverable)	288	ug/L	10.0	D	09/30/2022	1	
	EPA_1631	Mercury (Total)	0.004	ug/L	0.002		10/06/2022	1	
	EPA_300_0	Chloride	154	mg/L	0.50	D	09/30/2022	1	
		Sulfate	6960	mg/L	0.50	D	09/30/2022	1	

LIMS #: 474864 Sample Date: 9/26/2022 3:05:09 PM Sample Point: SC_14 Sample Point Description: Sand Canyon Well #14 Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.5	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	12.2	degrees C	0.000			1	
+	SM_2510_B	Conductivity	8890	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	258	mV	0			1	
	SM_2130_B	Turbidity	450	NTU	0.05			1	
	NA	Depth to Water	13.64	ft.	0.0000			1	
	SM_2540_C	Total Dissolved Solids	11700	mg/L	10			1	
	SM_4500_FC	Fluoride (Total)	0.74	mg/L	0.10	Т	09/28/2022	1	
	EPA_300_0	Chloride	146	mg/L	0.50	D	09/30/2022	1	
		Sulfate	6930	mg/L	0.50	D	09/30/2022	1	
	EPA_200_8	Antimony (Total Recoverable)	<0.50	ug/L	0.50	U1	10/03/2022	1	
		Arsenic (Total Recoverable)	2.4	ug/L	1.0	U1	10/03/2022	1	
		Barium (Total Recoverable)	79.8	ug/L	0.20	D	10/03/2022	1	
		Beryllium (Total Recoverable)	<0.20	ug/L	0.20	U1	09/30/2022	1	
		Cadmium (Total Recoverable)	<0.50	ug/L	0.50	U1	10/03/2022	1	
		Chromium (Total Recoverable)	10.4	ug/L	1.0	D	10/03/2022	1	
		Lead (Total Recoverable)	5.4	ug/L	0.50	D	10/03/2022	1	
		Molybdenum (Total Recoverable)	11.0	ug/L	0.20	D	10/03/2022	1	
		Selenium (Total Recoverable)	6.1	ug/L	1.0	U1	10/03/2022	1	
		Thallium (Total Recoverable)	<0.50	ug/L	0.50	U1	10/03/2022	1	
	EPA_200_7	Boron (Total Recoverable)	1450	ug/L	20.0		09/30/2022	1	
		Calcium (Total Recoverable)	362000	ug/L	100	D/B1	09/30/2022	1	
		Cobalt (Total Recoverable)	<5.00	ug/L	5.00		09/30/2022	1	
		Lithium (Total Recoverable)	276	ug/L	10.0	D	09/30/2022	1	
	EPA_1631	Mercury (Total)	0.011	ug/L	0.002		10/06/2022	1	

LIMS #: 474865 Sample Date: 9/26/2022 4:20:09 PM Sample Point: SC_11 Sample Point Description: Sand Canyon Well #11 Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.4	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	15.0	degrees C	0.000			1	
+	SM_2510_B	Conductivity	13500	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	158	mV	0			1	
	SM_2130_B	Turbidity	140	NTU	0.05			1	
	NA	Depth to Water	11.64	ft.	0.0000			1	
	SM_2540_C	Total Dissolved Solids	15100	mg/L	10			1	
	SM_4500_FC	Fluoride (Total)	0.57	mg/L	0.10	Т	09/28/2022	1	
	EPA_300_0	Chloride	1150	mg/L	0.50	D	09/30/2022	1	
		Sulfate	7740	mg/L	0.50	D	09/30/2022	1	
	EPA_200_8	Antimony (Total Recoverable)	<0.50	ug/L	0.50	U1	10/03/2022	1	
		Arsenic (Total Recoverable)	11.4	ug/L	1.0	D	10/03/2022	1	
		Barium (Total Recoverable)	40.5	ug/L	0.20	D	10/03/2022	1	
		Beryllium (Total Recoverable)	<0.20	ug/L	0.20	U1	09/30/2022	1	
		Cadmium (Total Recoverable)	<0.50	ug/L	0.50	U1	10/03/2022	1	
		Chromium (Total Recoverable)	5.5	ug/L	1.0	U1	10/03/2022	1	
		Lead (Total Recoverable)	2.4	ug/L	0.50	U1	10/03/2022	1	
		Molybdenum (Total Recoverable)	3.5	ug/L	0.20	D	10/03/2022	1	
		Selenium (Total Recoverable)	240	ug/L	1.0	D	10/03/2022	1	
		Thallium (Total Recoverable)	<0.50	ug/L	0.50	U1	10/03/2022	1	
	EPA_200_7	Boron (Total Recoverable)	2510	ug/L	20.0		09/30/2022	1	
		Calcium (Total Recoverable)	438000	ug/L	100	D/B1	09/30/2022	1	
		Cobalt (Total Recoverable)	<5.00	ug/L	5.00		09/30/2022	1	
		Lithium (Total Recoverable)	532	ug/L	10.0	D	09/30/2022	1	
	EPA_1631	Mercury (Total)	0.012	ug/L	0.002		10/06/2022	1	

LIMS #: 474866 Sample Date: 9/26/2022 12:30:09 PM Sample Point: SC_12 Sample Point Description: Sand Canyon Well #12 Collection Comments: Hg cap broke in field, replaced in SR Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.4	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	16.8	degrees C	0.000			1	
+	SM_2510_B	Conductivity	12400	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	70	mV	0			1	
	SM_2130_B	Turbidity	55	NTU	0.05			1	
	NA	Depth to Water	13.59	ft.	0.0000			1	
	SM_2540_C	Total Dissolved Solids	11100	mg/L	10			1	
	SM_4500_FC	Fluoride (Total)	0.93	mg/L	0.10	Т	09/28/2022	1	
	EPA_300_0	Chloride	288	mg/L	0.50	D	09/30/2022	1	
		Sulfate	8550	mg/L	0.50	D	09/30/2022	1	
	EPA_200_8	Antimony (Total Recoverable)	<0.50	ug/L	0.50	U1	10/03/2022	1	
		Arsenic (Total Recoverable)	<1.0	ug/L	1.0	U1	10/03/2022	1	
		Barium (Total Recoverable)	22.8	ug/L	0.20	D	10/03/2022	1	
		Beryllium (Total Recoverable)	<0.20	ug/L	0.20	U1	09/30/2022	1	
		Cadmium (Total Recoverable)	<0.50	ug/L	0.50	U1	10/03/2022	1	
		Chromium (Total Recoverable)	2.6	ug/L	1.0	U1	10/03/2022	1	
		Lead (Total Recoverable)	0.97	ug/L	0.50	U1	10/03/2022	1	
		Molybdenum (Total Recoverable)	6.1	ug/L	0.20	D	10/03/2022	1	
		Selenium (Total Recoverable)	12.7	ug/L	1.0	D	10/03/2022	1	
		Thallium (Total Recoverable)	<0.50	ug/L	0.50	U1	10/03/2022	1	
	EPA_200_7	Boron (Total Recoverable)	4370	ug/L	20.0		09/30/2022	1	
		Calcium (Total Recoverable)	374000	ug/L	100	D/B1	09/30/2022	1	
		Cobalt (Total Recoverable)	<5.00	ug/L	5.00		09/30/2022	1	
		Lithium (Total Recoverable)	406	ug/L	10.0	D	09/30/2022	1	
	EPA_1631	Mercury (Total)	0.004	ug/L	0.002		10/06/2022	1	

LIMS #: 474867 Sample Date: 9/26/2022 12:30:09 PM Sample Point: SC_12 Sample Point Description: Sand Canyon Well #12 Collection Comments: Duplicate Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
	SM_2540_C	Total Dissolved Solids	14300	mg/L	10			1	
	SM_4500_FC	Fluoride (Total)	0.92	mg/L	0.10	т	09/28/2022	1	
	EPA_300_0	Chloride	301	mg/L	0.50	D	09/30/2022	1	
		Sulfate	8440	mg/L	0.50	D	09/30/2022	1	
	EPA_200_8	Antimony (Total Recoverable)	<0.50	ug/L	0.50	U1	10/03/2022	1	
		Arsenic (Total Recoverable)	1.8	ug/L	1.0	U1	10/03/2022	1	
		Barium (Total Recoverable)	16.7	ug/L	0.20	D	10/03/2022	1	
		Beryllium (Total Recoverable)	<0.20	ug/L	0.20	U1	09/30/2022	1	
		Cadmium (Total Recoverable)	<0.50	ug/L	0.50	U1	10/03/2022	1	
		Chromium (Total Recoverable)	2.1	ug/L	1.0	U1	10/03/2022	1	
		Lead (Total Recoverable)	0.66	ug/L	0.50	U1	10/03/2022	1	
		Molybdenum (Total Recoverable)	6.6	ug/L	0.20	D	10/03/2022	1	
		Selenium (Total Recoverable)	15.4	ug/L	1.0	D	10/03/2022	1	
		Thallium (Total Recoverable)	<0.50	ug/L	0.50	U1	10/03/2022	1	
	EPA_200_7	Boron (Total Recoverable)	4420	ug/L	20.0		09/30/2022	1	
		Calcium (Total Recoverable)	380000	ug/L	100	D/B1	09/30/2022	1	
		Cobalt (Total Recoverable)	<5.00	ug/L	5.00		09/30/2022	1	
		Lithium (Total Recoverable)	391	ug/L	10.0	D	09/30/2022	1	
	EPA_1631	Mercury (Total)	0.004	ug/L	0.002		10/06/2022	1	

Flags

- * Analysis performed by an external contract laboratory.
- + Analysis performed in the field.

Data Qualifiers

- B1 Detection in the blank but the analyte concentration in the sample is 10x greater.
- D Value reported is multiplied by a dilution factor. The reporting limit is not.
- ISL Internal Standard Low, data may be biased high.
- T- MS recovery outside the established range. The recovery is matrix related, not method related.
- U1 Sample dilution required to minimize matrix effects, result is below the RL. MS/MSD results confirm accuracy.

Glossary

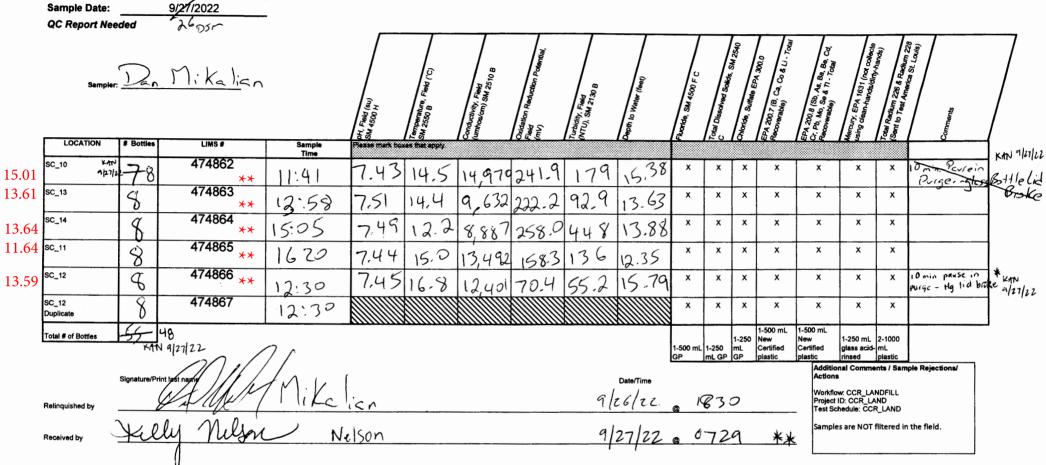
DQ - Data Qualifer RL – Reporting Limit MDL – Method Detection Limit Dil Fac – Dilution Factor

Case Narrative

CCR Landfill Groundwater Assessment Upgradient Wells

Colorado Springs Utilities Laboratory Services Grab Samples

Sampler:	D	3M	426 22	PH Find (w) Sha 4500 H	Tomporature, Foud ('C)	Conductivity, Floid (umhce:cm) SA 2510 B	Oxidation Reduction Potential, (my)	Turbidity, Flad INTU, SM 2130 B	Depth to Water (feet)	Fluoride, SM 4500 F.C.	Total Dissolved Solids, S.L.	Chioride, Suttate Eps.	EPA 200,7 (B. Ca, Co & LI - Tolar	EPA 200.8 (Sb. As. Ba Ba. Cd. Paccoveration) 8 11 Total	Mercury, EPA 1831 (Incl collecte Using clean-handscliny-honde	Total Radium 228 & Radium 220	Comments
LOCATION	# Bottles	LIMS#	Sample Time	Please mark box	es that apply.		,		,								
2.1	8	474856 **	14:0le	7.14	14.1	24,056	17102	12.4	2246	×	x	x	x	x	×	×	15.36
L1	8	474857 **	10:42	7.31	14.2	18,271	42,9	0.75	18.6	×	×	x	x	x	x	x	17.00
2	8	474858 **	11.56	747	13.7	8.164	228.8	7.99	15.34	×	×	x	x	x	x	x	14.80
,3A	8	474859**	15:25	7.54	14.0	7414	2365	86.4	22.32	x	x	x	x	x	x	×	19.88
38	8	474860 **	16:06	7.69	14.3	7419	147.4	21.4	31.27	×	x	x	x	x	x	x	21.91
UIP_BLK	le	474861	16:30							×	×	x	x	x	x		2
al # of tiles	46		/	,						1-500 mL GP	1-250 mL GP	1-250	1-500 mL New Certified plastic	1-500 mL New Certified plastic	1-250 mL glass acid- rinsed	2-1000 mL plastic	
elinquished by	Signature/Print	and the start	Aik	-dia				9	127/22	Date/Ti			/	Actions	CCR_LAND CCR_LAND CCR_LAND dule: CCR_L	FILL	Rejections/
ceived by	Kill	y nelsen	/ Nels	ion				9/2	28/2Z		77	0	*		are NOT		the field.


★★ Field sampler recorded final water level rather than initial water level on COC. The corrected values are in the comments column. WMA 1/13/23

* Samples left in locked SR cabinets in coolers on ice overnight and received in the morning KAN 9/20/22

Colorado Springs Utilities Laboratory Services Grab Samples

CCR Landfill Groundwater Assessment Downgradient and Cross Gradient Wells

** Field sampler recorded final water level rather than initial water level on COC. The corrected values are on the left side of the page. WMA 1/13/23

* Cap for Hg sample bettle broke. Replaced cap in sample Receiving on alz7/22. KAN 1/27/22 ** Samples left in coolers on ice in locked SR cabinets overnight. KAN 9/27/22

It's how we're all connected

Laboratory Services Section QC Report

CCR Landfill Assessment September 2022

Quality Assurance Approval: Lesley Susic

Date: 10/28/2022

This report is for sample numbers 474856 – 474867.

Total Dissolved Solids by Standard Methods 2540 C

There are no anomalies to report for this analysis.

Fluoride by Standard Methods 4500 F C

The matrix spike recovery is outside the established range in samples 474862 and 474865. The recovery is matrix related, not method related. Associated data are qualified.

Anions by EPA Method 300.0

There are no anomalies to report for this analysis.

Mercury by EPA 1631 E

There are no anomalies to report for this analysis.

EPA 200.7

Calcium was detected in the laboratory blank for sample 474862 – 474867. The sample concentrations are at least 10x greater than the blank concentration and the associated data are qualified.

EPA 200.8

The matrix spike recovery is outside the established range for Beryllium in sample 474860. The recovery is matrix related, not method related. Associated beryllium data are qualified.

Method: Total Dissolved Solids by Standard Methods 2540 C Batch Analysis date: 9/28/22 Sampled date: 9/26/22 for samples 474862 – 474867 Sampled date: 9/27/22 for samples 474856 – 474861

Matrix QC performed on sample 474859 and 474562

QC Type	Analyte	Recovery (%)	Acceptable Range (%)	RPD (%)	RPD Limit (%)
QCS	Total Dissolved Solids	99	85 - 110		
Duplicate	Total Dissolved Solids (474859)			6	<10
Duplicate	Total Dissolved Solids (474862)			4	<10

Method: Fluoride by Standard Methods 4500 F C Batch Analysis date: 9/28/22 Sampled date: 9/26/22 for samples 474862 – 474867 Sampled date: 9/27/22 for samples 474856 – 474861

Matrix QC performed on samples 474862 and 474865

QC Type	Analyte		Recovery (%)	Acceptable Range (%)	RPD (%)	RPD Limit (%)
MRL	Fluoride (Total)		100	90 - 110		
QCS	Fluoride (Total)		98	90 - 110		
MS	Fluoride (Total) (474	862)	<u>*63</u>	80 - 120		
MSD	Fluoride (Total) (474	862)			<1	<20
MS	Fluoride (Total) (474	865)	<u>*64</u>	80 - 120		
MSD	Fluoride (Total) (474	865)			<1	<20
QC Type	Analyte	Con	centration	Limit		
LRB	Fluoride (Total)	<0	.05 mg/L	0.05 mg/L]	

*See Narrative

Method: Anions by EPA Method 300.0 Batch Analysis date: 9/29/22 Sampled date: 9/26/22 for samples 474862 – 474867 Sampled date: 9/27/22 for samples 474856 – 474861

QC Type	Analyte	Recovery (%)	Acceptable Range (%)	RPD (%)	RPD Limit (%)
MRL	Chloride	99	50-150		
LFB	Chloride	96	90-110	<1	<20
LD	Chloride (474863)			<1	<20
LD	Chloride (475058)			3	<20
MS	Chloride (474863)	100	80-120		
MS	Chloride (475058)	100	80-120		
MRL	Sulfate	115	50-150		
LFB	Sulfate	96	90-110	<1	<20
LD	Sulfate (474863)			<1	<20
LD	Sulfate (475058)			3	<20
MS	Sulfate (474863)	118	80-120		
MS	Sulfate (475058)	109	80-120		
QC Type	Analyte	Concentration	Limit		
LRB	Chloride	<0.17 mg/L	0.17 mg/L		
LRB	Sulfate	<0.17 mg/L	0.17 mg/L		

Method: Mercury by EPA 1631 E Batch Analysis date: 10/6/22 Sampled date: 9/26/22 for samples 474862 – 474867 Sampled date: 9/27/22 for samples 474858 – 474861

Matrix QC performed on sample 474860

QC Type	Analyte	Recovery (%)	Acceptable Range (%)	RPD (%)	RPD Limit (%)
MRL	Mercury (Total)	86	60-140		
QCS	Mercury (Total)	111	77-123		
MS	Mercury (Total)	75	71-125		
MSD	Mercury (Total)			4	<24
QC Type	Analyte	Concentration	Limit		
LRB	Mercury (Total)	<0.5 ng/L	0.5 ng/L		

Method: Mercury by EPA 1631 E Batch Analysis date: 10/13/22 Sampled date: 9/27/22 for samples 474856 and 474857

Matrix QC performed on samples 474857

QC Type	Analyte	Recovery (%)	Acceptable Range (%)	RPD (%)	RPD Limit (%)
MRL	Mercury (Total)	100	60-140		
QCS	Mercury (Total)	99	77-123		
MS	Mercury (Total)	82	71-125		
MSD	Mercury (Total)			11	<24
QC Type	Analyte	Concentration	Limit		
LRB	Mercury (Total)	<0.5 ng/L	0.5 ng/L		

Method: EPA 200.7 Batch Analysis date: 9/30/22 Digestion date: 9/28/22 Sampled date: 9/26/22 for samples 474862 - 474867

Matrix QC performed on sample 474866

QC Type	Analyte	Recovery		ptable	RPD	RPD Limit
		(%)	Rang	je (%)	(%)	(%)
MRL	Boron (Total Recoverable)	103	50-	·150		
LFB	Boron (Total Recoverable)	102	85	·115		
MS	Boron (Total Recoverable)	95	70-	130		
MSD	Boron (Total Recoverable)				<1	<20
MRL	Calcium (Total Recoverable)	103	50-	·150		
LFB	Calcium (Total Recoverable)	99	85	·115		
MS	Calcium (Total Recoverable)	75	70-	·130		
MSD	Calcium (Total Recoverable)				1	<20
MRL	Cobalt (Total Recoverable)	99	50-	·150		
LFB	Cobalt (Total Recoverable)	100	85	·115		
MS	Cobalt (Total Recoverable)	88	70-	·130		
MSD	Cobalt (Total Recoverable)				<1	<20
MRL	Lithium (Total Recoverable)	95	50-	·150		
LFB	Lithium (Total Recoverable)	100	85	·115		
MS	Lithium (Total Recoverable)	97	70-	·130		
MSD	Lithium (Total Recoverable)				3	<20
QC Type	Analyte	Concentra	tion		Limit	
LRB	Boron (Total Recoverable)	<4.80 ug	/L	4.8	30 ug/L	
LRB	Calcium (Total Recoverable)	<u>*48.6 ug/</u>	<u>/L</u>	18	.1 ug/L	
LRB	Cobalt (Total Recoverable)	<2.00 ug	/L	2.0	00 ug/L	
LRB	Lithium (Total Recoverable)	<7.41 ug	/L	7.4	41 ug/L	
*See Narra	ativo	· · · · · · · · · · · · · · · · · · ·				

*See Narrative

Method: EPA 200.7 Batch Analysis date: 10/10/22 Digestion date: 10/4/22 Sampled date: 9/27/22 for samples 474856 - 474861

QC Type	Analyte	Recovery (%)		ptable je (%)	RPD (%)	RPD Limit (%)
MRL	Boron (Total Recoverable)	108		150		
LFB	Boron (Total Recoverable)	105	85-	115		
MS	Boron (Total Recoverable)	108	70-	130		
MSD	Boron (Total Recoverable)				<1	<20
MRL	Calcium (Total Recoverable)	129	50-	150		
LFB	Calcium (Total Recoverable)	102	85-	115		
MS	Calcium (Total Recoverable)	107	70-	130		
MSD	Calcium (Total Recoverable)				<1	<20
MRL	Cobalt (Total Recoverable)	103	50-	150		
LFB	Cobalt (Total Recoverable)	102	85-	115		
MS	Cobalt (Total Recoverable)	93	70-	130		
MSD	Cobalt (Total Recoverable)				<1	<20
MRL	Lithium (Total Recoverable)	100	50-	150		
LFB	Lithium (Total Recoverable)	102	85-	115		
MS	Lithium (Total Recoverable)	123	70-	130		
MSD	Lithium (Total Recoverable)				1	<20
QC Type	Analyte	Concentra	tion		Limit	
LRB	Boron (Total Recoverable)	<4.80 ug/	/L	4.8	30 ug/L	
LRB	Calcium (Total Recoverable)	<18.1 ug/	/L	18	.1 ug/L	
LRB	Cobalt (Total Recoverable)	<2.00 ug/	/L	2.0)0 ug/L	
LRB	Lithium (Total Recoverable)	<7.41 ug/		7.4	41 ug/L	

Matrix QC performed on sample 474860

EPA Method: EPA 200.8 Digestion date: 9/28/22 Batch Analysis date: 9/30/22 for all except Be Batch Analysis date: 10/3/22 for Be Sampled date: 9/26/22 for samples 474862 - 474867

Matrix QC performed on sample 474866

QC Type	Analyte	Recovery (%)	Acceptable Range (%)	RPD (%)	RPD Limit (%)
MRL	Antimony (Total Recoverable)	106	50-150		
LFB	Antimony (Total Recoverable)	102	85-115		
MS	Antimony (Total Recoverable)	97	70-130		
MSD	Antimony (Total Recoverable)			1	<20
MRL	Arsenic (Total Recoverable)	104	50-150		
LFB	Arsenic (Total Recoverable)	103	85-115		
MS	Arsenic (Total Recoverable)	97	70-130		
MSD	Arsenic (Total Recoverable)			6	<20
MRL	Barium (Total Recoverable)	109	50-150		
LFB	Barium (Total Recoverable)	103	85-115		

MS	Barium (Total Recoverable)	92	70	-130			
MSD	Barium (Total Recoverable)	1				1	<20
MRL	Beryllium (Total Recoverable)	106	50	-150			
LFB	Beryllium (Total Recoverable)	99	85	-115			
MS	Beryllium (Total Recoverable)	80		-130			
MSD	Beryllium (Total Recoverable)					2	<20
MRL	Cadmium (Total Recoverable)	105	50	-150			
LFB	Cadmium (Total Recoverable)	103	85	-115			
MS	Cadmium (Total Recoverable)	94	70	-130			
MSD	Cadmium (Total Recoverable)					3	<20
MRL	Chromium (Total Recoverable)	98	50	-150			
LFB	Chromium (Total Recoverable)	100	85	-115			
MS	Chromium (Total Recoverable)	94	70	-130			
MSD	Chromium (Total Recoverable)				<	:1	<20
MRL	Lead (Total Recoverable)	102	50	-150			
LFB	Lead (Total Recoverable)	100	85	-115			
MS	Lead (Total Recoverable)	102	70	-130			
MSD	Lead (Total Recoverable)				<	:1	<20
MRL	Molybdenum (Total Recoverable)	108	50	-150			
LFB	Molybdenum (Total Recoverable)	102	85	-115			
MS	Molybdenum (Total Recoverable)	102	70	-130			
MSD	Molybdenum (Total Recoverable)				<	:1	<20
MRL	Selenium (Total Recoverable)	108	50	-150			
LFB	Selenium (Total Recoverable)	106	85	-115			
MS	Selenium (Total Recoverable)	96	70	-130			
MSD	Selenium (Total Recoverable)					3	<20
MRL	Thallium (Total Recoverable)	93	50	-150			
LFB	Thallium (Total Recoverable)	97	85	-115			
MS	Thallium (Total Recoverable)	100	70	-130			
MSD	Thallium (Total Recoverable)				<	:1	<20
QC Type	Analyte	Concentratio	on	Limit			
LRB	Antimony (Total Recoverable)	<0.18 ug/L	-	0.18 ug/l	_		
LRB	Arsenic (Total Recoverable)	<0.36 ug/L	-	0.36 ug/l	_		
LRB	Barium (Total Recoverable)	<0.10 ug/L		0.10 ug/l	_		
LRB	Beryllium (Total Recoverable)	<0.12 ug/L		0.12 ug/l	_		
LRB	Cadmium (Total Recoverable)	<0.14 ug/L		0.14 ug/l	_		
LRB	Chromium (Total Recoverable)	<0.27 ug/L		0.27 ug/l	_		
LRB	Lead (Total Recoverable)	<0.14 ug/L	-	0.14 ug/l	_		
LRB	Molybdenum (Total Recoverable)	<0.12 ug/L		0.12 ug/l	_		
LRB	Selenium (Total Recoverable)	<0.44 ug/L		0.44 ug/l	_		
LRB	Thallium (Total Recoverable)	<0.11 ug/L	-	0.11 ug/l	_		

Matrix QC performed on sample 474860

QC Type	Analyte	Recovery (%)	Acceptable Range (%)	RPD (%)	RPD Limit (%)
MRL	Antimony (Total Recoverable)	137	50-150		
LFB	Antimony (Total Recoverable)	104	85-115		
MS	Antimony (Total Recoverable)	103	70-130		
MSD	Antimony (Total Recoverable)			<1	<20
MRL	Arsenic (Total Recoverable)	107	50-150		
LFB	Arsenic (Total Recoverable)	103	85-115		
MS	Arsenic (Total Recoverable)	98	70-130		
MSD	Arsenic (Total Recoverable)			3	<20
MRL	Barium (Total Recoverable)	107	50-150		
LFB	Barium (Total Recoverable)	104	85-115		
MS	Barium (Total Recoverable)	104	70-130		
MSD	Barium (Total Recoverable)			<1	<20
MRL	Beryllium (Total Recoverable)	113	50-150		
LFB	Beryllium (Total Recoverable)	94	85-115		
MS	Beryllium (Total Recoverable)	<u>*66</u>	70-130		
MSD	Beryllium (Total Recoverable)			4	<20
MRL	Cadmium (Total Recoverable)	99	50-150		
LFB	Cadmium (Total Recoverable)	101	85-115		
MS	Cadmium (Total Recoverable)	91	70-130		
MSD	Cadmium (Total Recoverable)			2	<20
MRL	Chromium (Total Recoverable)	97	50-150		
LFB	Chromium (Total Recoverable)	101	85-115		
MS	Chromium (Total Recoverable)	95	70-130		
MSD	Chromium (Total Recoverable)			1	<20
MRL	Lead (Total Recoverable)	100	50-150		
LFB	Lead (Total Recoverable)	100	85-115		
MS	Lead (Total Recoverable)	102	70-130		
MSD	Lead (Total Recoverable)			<1	<20
MRL	Molybdenum (Total Recoverable)	108	50-150		
LFB	Molybdenum (Total Recoverable)	101	85-115		
MS	Molybdenum (Total Recoverable)	103	70-130		
MSD	Molybdenum (Total Recoverable)			1	<20
MRL	Selenium (Total Recoverable)	107	50-150		
LFB	Selenium (Total Recoverable)	105	85-115		
MS	Selenium (Total Recoverable)	88	70-130		
MSD	Selenium (Total Recoverable)			2	<20
MRL	Thallium (Total Recoverable)	93	50-150		
LFB	Thallium (Total Recoverable)	99	85-115		
MS	Thallium (Total Recoverable)	102	70-130		
MSD	Thallium (Total Recoverable)			<1	<20
QC Type	Analyte	Concentrat	ion Limit		
LRB	Antimony (Total Recoverable)	<0.18 ug/	L 0.18 ug/	L	
LRB	Arsenic (Total Recoverable)	<0.36 ug/	· · · · · · · · · · · · · · · · · · ·		
LRB	Barium (Total Recoverable)	<0.10 ug/	· · · · · · · · · · · · · · · · · · ·		

LRB	Beryllium (Total Recoverable)	<0.12 ug/L	0.12 ug/L
LRB	Cadmium (Total Recoverable)	<0.14 ug/L	0.14 ug/L
LRB	Chromium (Total Recoverable)	<0.27 ug/L	0.27 ug/L
LRB	Lead (Total Recoverable)	<0.14 ug/L	0.14 ug/L
LRB	Molybdenum (Total Recoverable)	<0.27 ug/L	0.27 ug/L
LRB	Selenium (Total Recoverable)	<0.44 ug/L	0.44 ug/L
LRB	Thallium (Total Recoverable)	<0.11 ug/L	0.11 ug/L

*See Narrative

LD – Field Duplicate LFB – Laboratory Fortified Blank LRB – Laboratory Reagent Blank (Method Blank) QCS – Quality Control Sample MRL – Minimum Reporting Limit (Verification) MS – Matrix Spike MSD – Matrix Spike Duplicate <u>Underline</u> – Data was outside the limit

🛟 eurofins

Environment Testing

5

ANALYTICAL REPORT

Eurofins St. Louis 13715 Rider Trail North Earth City, MO 63045 Tel: (314)298-8566

Laboratory Job ID: 160-47252-1 Client Project/Site: CCR Landfill

For:

LINKS

Review your project results through

EOL

Have a Question?

www.eurofinsus.com/Env

Visit us at:

Ask— The Expert Colorado Springs Utilities Laboratory Services Section 701 E. Las Vegas St., MC 1465 Colorado Springs, Colorado 80903

Attn: Ms. Wendy Asay

Rhonda Ridenhouer)

Authorized for release by: 10/31/2022 10:22:30 AM

Rhonda Ridenhower, Client Service Manager (314)298-8566 Rhonda.Ridenhower@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Table of Contents2Case Narrative3Chain of Custody4Receipt Checklists5Definitions/Glossary6Method Summary7Sample Summary8Client Sample Results9QC Sample Results16QC Association Summary17Tracer Carrier Summary18	Cover Page	1
Chain of Custody4Receipt Checklists5Definitions/Glossary6Method Summary7Sample Summary8Client Sample Results9QC Sample Results16QC Association Summary17	Table of Contents	2
Receipt Checklists5Definitions/Glossary6Method Summary7Sample Summary8Client Sample Results9QC Sample Results16QC Association Summary17	Case Narrative	3
Definitions/Glossary6Method Summary7Sample Summary8Client Sample Results9QC Sample Results16QC Association Summary17	Chain of Custody	4
Method Summary7Sample Summary8Client Sample Results9QC Sample Results16QC Association Summary17	Receipt Checklists	5
Sample Summary8Client Sample Results9QC Sample Results16QC Association Summary17	Definitions/Glossary	6
Client Sample Results9QC Sample Results16QC Association Summary17	Method Summary	7
QC Sample Results16QC Association Summary17	Sample Summary	8
QC Association Summary 17	Client Sample Results	9
-	QC Sample Results	16
Tracer Carrier Summary 18	QC Association Summary	17
	Tracer Carrier Summary	18

Job ID: 160-47252-1

Laboratory: Eurofins St. Louis

Narrative

Job Narrative 160-47252-1

Case Narrative

Receipt

The samples were received on 9/29/2022 12:30 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved. The temperatures of the 2 coolers at receipt time were 12.1° C and 12.5° C.

RAD

Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative.

Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date

Radium 228 Batch 584854

The Ra-228 laboratory control sample (LCS) associated with the following samples recovered at 134%: 474856 CC_1 (160-47252-1), 474857 FC_1 (160-47252-2), 474858 FC_2 (160-47252-3), 474859 FC_3A (160-47252-4), 474860 FC_3B (160-47252-5), 474862 SC_10 (160-47252-6), 474863 SC_13 (160-47252-7), 474864 SC_14 (160-47252-8), 474865 SC_11 (160-47252-9), 474866 SC_12 (160-47252-10), 474867 SC_12 DUPLICATE (160-47252-11), (LCS 160-584854/2-A), (160-47249-B-1-B) and (160-47249-C-1-B DU). The limits in our LIMS system at 75-125% reflect the requirements of a regulatory agency that represents a large amount of our work. However, the samples associated with this LCS are not from this agency and are therefore held to our in-house statistical limits of 57-141% per method requirements. The LCS is within criteria and no further action is required.

The following samples did not meet the requested limit (RL) due to the reduced sample volume attributed to the presence of matrix interference. During preparation the analyst visually noted matrix effects. The data have been reported with this narrative. 474862 SC_10 (160-47252-6), 474863 SC_13 (160-47252-7), 474864 SC_14 (160-47252-8), 474865 SC_11 (160-47252-9), 474866 SC_12 (160-47252-10) and 474867 SC_12 DUPLICATE (160-47252-11)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

5

Louis	
TestAmerica St.	13715 Rider Trail North

Chain of Custody Record

Earth City, MO 63045-1205

Client Contact	Project Ma	Project Manager: Wend	endy Asay		3	Site Contact:	ntact:				Date:				COC No:
Colorado Springs Utilities	Tel/Fax: 719-668-4603	9-668-460	13			Lab Cor	ntact:	Contact: Rhonda	da Ride	Ridenhower	Carrier:				of
701 E. Las Vegas St.		nalysis Tı	Analysis Turnaround Time	Time	F	E	L	F		E				F	Sampler:
Colorado Springs, CO 80903	CALEN	CALENDAR DAYS	WOR	WORKING DAYS		_		82							For Lab Use Only:
(719) 668-4603 Phone	TAT	TAT if different from Below	om Below					2 e							Walk-in Client:
	5	2	2 weeks			/ \		ЯÞ							Lab Sampling:
Project Name: CCR Landfill		1	1 week) 0		ue ș						3	
Site:	C	2	2 days		/ 1	SW		520							Job / SDG No.:
PO#		1	1 day			/ 51		вЯ							
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	Cont Cont Cont Cont Cont Cont Cont Cont	Filtered S Perform M Total Radi	Total Radi	benidmo⊃							Sample Specific Notes
474856 CC_1	9/27/22	14:06	υ	GW	~	×	×	×							
474857 FC_1	9/27/22	10:42	U	GW	2	×	×	×							16
474858 FC_2	9/27/22	11:56	υ	GW	~	×	×	×							0-472
474859 FC_3A	9/27/22	15:25	U	GW	2	×	×	×							252 0
474860 FC_3B	9/27/22	16:06	υ	GW	~	z	×	×							Chain
474862 SC_10	9/26/22	11:41	υ	GW	2	z	××	×	2.00						of C
474863 SC_13	9/26/22	13:58	υ	GW	2	z	××	×							ustod
474864 SC_14	9/26/22	15:05	U	GW	2	×	×	×	-						y
474865 SC_11	9/26/22	16:20	υ	GW	2	×	×	×	2.5-						
474866 SC_12	9/26/22	12:30	U	GW	2	×	×	×							
474867 SC_12 Duplicate	9/26/22	12:30	υ	GW	N	×	×	×							
Preservation Used: 1= loe, 2= HCl; 3= H2SO4: 4=HNO3: 5=NaOH; 6= Other	=NaOH: 6= 0	ther			-										
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please Comments Section if the lab is to dispose of the sample.	Please List any EPA Waste Codes	Waste Co		for the sample in the	the	Sam	ple D	sods	Sample Disposal (A fee	t may be	assessed if		samples ai	re retain	are retained longer than 1 month)
Non-Hazard Flammable Skin Irritant	Poison B	3	Unknown	un		1	Retur	Return to Client	nt	Ć	Disnosal hv I ah	de l'		Archive for	Months
Special Instructions/QC Requirements & Comments: Please be sure to use th	se be sur	e to use		e listed method numbers	n bor	nmbe	ers.			<u>,</u>					
Custody Seals Intact:	Custody Seal No	al No.:						Coolei	r Temp.	Cooler Temp. (°C): Obs'd	:p,s		Corr'd:		Therm ID No.:
relgen	Company: Celorado	Surings	Utitites	Date/Time 9/25/22	e: 10:20		Received by:	$\mathcal{Y}_{\underline{X}}$	101	ti,		Company:	:Yu		Date/Time:
Relinquished by:	Company:			Date/Time:			Received by	N.	M		1	Company	A A		Date/Time:
nquished by:	Company:			Date/Time:	5	Rece	ived	n Labo	Received in Laboratory by:			Company			Date/Time

4

5

Client: Colorado Springs Utilities

Login Number: 47252 List Number: 1 Creator: Booker, Autumn R

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 160-47252-1

List Source: Eurofins St. Louis

6

Qualifiers

	-	-1	
- 13	67	а	
		-	

Qualifier	Qualifier Description	
G	The Sample MDC is greater than the requested RL.	
U	Result is less than the sample detection limit.	5

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Method Summary

Client: Colorado Springs Utilities Project/Site: CCR Landfill

Method	Method Description	Protocol	Laboratory
903.0	Radium-226 (GFPC)	EPA	EET SL
904.0	Radium-228 (GFPC)	EPA	EET SL
Ra226_Ra228	Combined Radium-226 and Radium-228	TAL-STL	EET SL
PrecSep_0	Preparation, Precipitate Separation	None	EET SL
PrecSep-21	Preparation, Precipitate Separation (21-Day In-Growth)	None	EET SL
Protocol Ref	erences:		
EPA = US	Environmental Protection Agency		
None = No	one		
TAL-STL =	TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.		

EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Eurofins St. Louis

Sample Summary

Collected

Received

09/27/22 14:06 09/29/22 12:30

09/27/22 10:42 09/29/22 12:30

09/27/22 11:56 09/29/22 12:30

09/27/22 15:25 09/29/22 12:30

09/27/22 16:06 09/29/22 12:30

09/26/22 11:41 09/29/22 12:30

09/26/22 13:58 09/29/22 12:30

09/26/22 15:05 09/29/22 12:30

09/26/22 16:20 09/29/22 12:30

09/26/22 12:30 09/29/22 12:30

09/26/22 12:30 09/29/22 12:30

Matrix

Water

Client: Colorado Springs Utilities Project/Site: CCR Landfill

Client Sample ID

474856 CC_1

474857 FC_1

474858 FC_2

474859 FC_3A

474860 FC_3B

474862 SC_10

474863 SC_13

474864 SC_14

474865 SC_11

474866 SC_12

474867 SC_12 DUPLICATE

Lab Sample ID

160-47252-1

160-47252-2

160-47252-3

160-47252-4

160-47252-5

160-47252-6

160-47252-7

160-47252-8

160-47252-9

160-47252-10

160-47252-11

5
8
9

Page	8	of	18
------	---	----	----

Client Sample ID: 474856 CC_1 Date Collected: 09/27/22 14:06 Date Received: 09/29/22 12:30

Lab Sample ID: 160-47252-1 Matrix: Water

Lab Sample ID: 160-47252-2

Matrix: Water

watrix: water

5

9

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2 σ+/-)	(2 σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil F
Radium-226	0.919		0.254	0.267	1.00	0.249	pCi/L	10/06/22 09:52	10/28/22 11:32	
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil F
Ba Carrier	74.3		40 - 110					10/06/22 09:52	10/28/22 11:32	

Radium-228	4.58	0.912	1.01	1.00	0.833 pCi/L	10/06/22 10:12	10/20/22 11:58	1
Carrier	%Yield Qual	ifier Limits				Prepared	Analyzed	Dil Fac
Ba Carrier	74.3	40 - 110				10/06/22 10:12	10/20/22 11:58	1
Y Carrier	81.9	40 - 110				10/06/22 10:12	10/20/22 11:58	1

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2 σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	5.50		0.947	1.04	5.00	0.833	pCi/L		10/31/22 10:01	1

Client Sample ID: 474857 FC_1

Date Collected: 09/27/22 10:42

Date Received: 09/29/22 12:30

Method:	EPA	903.0 -	Radium-226	(GFPC)
in other a.				

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2 σ+/-)	(2 σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.407		0.152	0.157	1.00	0.160	pCi/L	10/06/22 09:52	10/28/22 11:32	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	85.0		40 - 110					10/06/22 09:52	10/28/22 11:32	1

Method: EPA 904.0 - Radium-228 (GFPC)

Analyte Radium-228	Result 3.71	Qualifier	Count Uncert. (2σ+/-) 0.781	Total Uncert. (2σ+/-) 0.852	RL 1.00	MDC 0.748	 Prepared 10/06/22 10:12	Analyzed	Dil Fac
Carrier	%Yield	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Ba Carrier	85.0		40 - 110				10/06/22 10:12	10/20/22 11:58	1
Y Carrier	83.7		40 - 110				10/06/22 10:12	10/20/22 11:58	1

Client Sample Results

			Clie	nt Samp	le Res	ults				
Client: Colorado Spring Project/Site: CCR Land		\$							Job ID: 160-4	7252-1
Client Sample ID: Date Collected: 09/27 Date Received: 09/29	//22 10:42	2 -						Lab Sample		252-2 : Water
Method: TAL-STL R			nined Radi	um-226 an	d Radiur	n-228				
Method. TAE OTE N			Count	Total	antaanan					
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC		Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	4.12		0.796	0.866	5.00	0.748	pCi/L		10/31/22 10:01	1
Client Sample ID:	474858	FC 2						Lab Sample	D: 160-47	252-3
Date Collected: 09/27 Date Received: 09/29	<mark>7/22 11:56</mark>	;								: Water
Method: EPA 903.0 -			רי ני							
	Ruurum	220 (011 (Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2 σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0485	U	0.104	0.104	1.00	0.187	pCi/L	10/06/22 09:52	10/28/22 11:32	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	58.1		40 - 110						10/28/22 11:32	1
Method: EPA 904.0 - Analyte		Qualifier	Count Uncert. (2σ+/-)	Total Uncert. (2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	2.13		0.693	0.721	1.00	0.823		<u>10/06/22 10:12</u>		
11000000	2.10		0.000	0.721	1.00	0.020	P0#2	10/00/22 10:12	10/20/22 12:00	•
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	58.1		40 - 110					10/06/22 10:12	10/20/22 12:03	1
Y Carrier	81.1		40 - 110					10/06/22 10:12	10/20/22 12:03	1
Method: TAL-STL Ra	a226_Ra2	228 - Comb	• ·		d Radiun	n-228				
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	2.18		0.701	0.728	5.00	0.823			10/31/22 10:01	1
Client Sample ID:								Lab Sample	e ID: 160-47	252-4
Date Collected: 09/27 Date Received: 09/29									Matrix	: Water
_ Method: EPA 903.0 -	- Radium	-226 (GFP(C)							
		``	Count	Total						
			Uncert.	Uncert.						
	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Analyte				0.110	1.00	0.133	nCi/l	10/06/22 09:52	10/28/22 13:46	1
Analyte Radium-226	0.191		0.111	0.112	1.00	0.155	poi/L	10/00/22 09:52	10/20/22 13:40	1
	0.191	Qualifier	0.111 <i>Limits</i>	0.112	1.00	0.155	poi/L	Prepared	Analyzed	Dil Fac

ient: Colorado Spr oject/Site: CCR La		3							Job ID: 160-4	7252-1
lient Sample II		FC 3A						Lab Sample	D: 160-47	252-4
ate Collected: 09/	27/22 15:25	5 -							Matrix:	
Method: EPA 904.			C)							
		(0	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2 σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	1.44		0.622	0.636	1.00	0.810	pCi/L	10/06/22 10:12	10/20/22 12:03	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	73.8		40 - 110					10/06/22 10:12	10/20/22 12:03	1
Y Carrier	80.4		40 - 110					10/06/22 10:12	10/20/22 12:03	1
Method: TAL-STL	Ra226_Ra2	228 - Com	bined Radi	um-226 an	d Radiun	n-228				
			Count	Total						
			Uncert.	Uncert.						
Analyte		Qualifier	(2σ+/-)	(2σ+/-)	RL		Unit	Prepared	Analyzed	Dil Fac
			0.632	0.646	5.00	0.810	pCi/L		10/31/22 10:01	1
226 + 228 Client Sample II Date Collected: 09/	27/22 16:06	s —						Lab Sample	ID: 160-47 Matrix:	
Date Collected: 09/ Date Received: 09/2	D: 474860 27/22 16:06 29/22 12:30	- 	<u> </u>					Lab Sample		
226 + 228 Client Sample II Date Collected: 09/ Date Received: 09/	D: 474860 27/22 16:06 29/22 12:30	- 		Total				Lab Sample		
226 + 228 Client Sample II Date Collected: 09/ Date Received: 09/	D: 474860 27/22 16:06 29/22 12:30	- 	Count	Total Uncert.				Lab Sample		
226 + 228 Client Sample II Date Collected: 09/ Date Received: 09/2 Method: EPA 903.	D: 474860 27/22 16:06 29/22 12:30 0 - Radium	- 	Count Uncert.	Uncert.	RL	MDC	Unit	Lab Sample	Matrix:	
226 + 228 Client Sample II Date Collected: 09/ Date Received: 09/2 Method: EPA 903.	D: 474860 27/22 16:06 29/22 12:30 0 - Radium	6) -226 (GFP	Count		RL 1.00		Unit pCi/L			Water
226 + 228 Client Sample II Date Collected: 09/ Date Received: 09/2 Method: EPA 903. Analyte Radium-226	D: 474860 27/22 16:06 29/22 12:30 0 - Radium <u>Result</u> 0.339	-226 (GFP	Count Uncert. (2σ+/-) 0.151	Uncert. (2σ+/-)				Prepared 10/06/22 09:52	Matrix: Analyzed 10/28/22 13:46	Water Dil Fac
226 + 228 Client Sample II Date Collected: 09/2 Date Received: 09/2 Method: EPA 903.	D: 474860 27/22 16:06 29/22 12:30 0 - Radium <u>Result</u> 0.339	6) -226 (GFP	Count Uncert. (2σ+/-)	Uncert. (2σ+/-)				Prepared	Matrix: Analyzed 10/28/22 13:46 Analyzed	Water Dil Fac
226 + 228 Client Sample II Date Collected: 09/2 Date Received: 09/2 Method: EPA 903. Analyte Radium-226 Carrier Ba Carrier	D: 474860 27/22 16:06 29/22 12:30 0 - Radium Result 0.339 %Yield 52.9	Qualifier	Count Uncert. (2σ+/-) 0.151 Limits 40 - 110	Uncert. (2σ+/-)				Prepared 10/06/22 09:52 Prepared	Matrix: Analyzed 10/28/22 13:46 Analyzed	Water Dil Fac 1 Dil Fac
226 + 228 Client Sample II Date Collected: 09/2 Date Received: 09/2 Method: EPA 903. Analyte Radium-226 Carrier Ba Carrier	D: 474860 27/22 16:06 29/22 12:30 0 - Radium Result 0.339 %Yield 52.9	Qualifier	Count Uncert. $(2\sigma+/-)$ 0.151 <u>Limits</u> 40 - 110 C)	Uncert. (2σ+/-) 0.154				Prepared 10/06/22 09:52 Prepared	Matrix: Analyzed 10/28/22 13:46 Analyzed	Water Dil Fac 1 Dil Fac
226 + 228 Client Sample II Date Collected: 09/2 Date Received: 09/2 Method: EPA 903. Analyte Radium-226 <i>Carrier</i>	D: 474860 27/22 16:06 29/22 12:30 0 - Radium Result 0.339 %Yield 52.9	Qualifier	Count Uncert. $(2\sigma+/-)$ 0.151 <u>Limits</u> 40 - 110 C) Count	Uncert. (2σ+/-) 0.154				Prepared 10/06/22 09:52 Prepared	Matrix: Analyzed 10/28/22 13:46 Analyzed	Water Dil Fac 1 Dil Fac
226 + 228 Client Sample II Date Collected: 09// Date Received: 09// Method: EPA 903. Analyte Radium-226 Carrier Ba Carrier Method: EPA 904.	D: 474860 27/22 16:06 29/22 12:30 0 - Radium Result 0.339 %Yield 52.9 0 - Radium	Qualifier Qualifier Qualifier	Count Uncert. $(2\sigma+/-)$ 0.151 <u>Limits</u> 40 - 110 C) Count Uncert.	Uncert. (2σ+/-) 0.154 Total Uncert.	1.00	0.167	pCi/L	Prepared 10/06/22 09:52 Prepared 10/06/22 09:52	Matrix: Analyzed 10/28/22 13:46 Analyzed 10/28/22 13:46	Dil Fac1Dil Fac111
226 + 228 Client Sample II Date Collected: 09// Date Received: 09// Method: EPA 903. Analyte Radium-226 Carrier Ba Carrier Method: EPA 904. Analyte	D: 474860 27/22 16:06 29/22 12:30 0 - Radium Result 0.339 <u>%Yield</u> 52.9 0 - Radium Result	Qualifier	Count Uncert. $(2\sigma+/-)$ 0.151 <u>Limits</u> 40 - 110 C) Count Uncert. $(2\sigma+/-)$	Uncert. (2σ+/-) 0.154 Total Uncert. (2σ+/-)	1.00	0.167 MDC	pCi/L Unit	Prepared 10/06/22 09:52 Prepared 10/06/22 09:52 Prepared	Matrix: Analyzed 10/28/22 13:46 Analyzed Analyzed	Water Dil Fac 1 Dil Fac
226 + 228 Client Sample II Date Collected: 09// Date Received: 09// Method: EPA 903. Analyte Radium-226 Carrier Ba Carrier Method: EPA 904. Analyte Radium-228	D: 474860 27/22 16:06 29/22 12:30 0 - Radium <u>Result</u> 0.339 <u>%Yield</u> 52.9 0 - Radium <u>Result</u> 2.62	Qualifier Qualifier -228 (GFP -228 (GFP	Count Uncert. $(2\sigma+/-)$ 0.151 <u>Limits</u> 40 - 110 C) Count Uncert. $(2\sigma+/-)$ 0.823	Uncert. (2σ+/-) 0.154 Total Uncert.	1.00	0.167	pCi/L Unit	Prepared 10/06/22 09:52 Prepared 10/06/22 09:52 Prepared 10/06/22 10:12	Matrix: <u>Analyzed</u> 10/28/22 13:46 <u>Analyzed</u> 10/28/22 13:46 <u>Analyzed</u> 10/20/22 12:03	Dil Fac1Dil Fac1Dil Fac11111
226 + 228 Client Sample II Date Collected: 09// Date Received: 09// Method: EPA 903. Analyte Radium-226 Carrier Ba Carrier Method: EPA 904. Analyte Radium-228 Carrier	D: 474860 27/22 16:06 29/22 12:30 0 - Radium - Result 0.339 - %Yield 52.9 0 - Radium - Result 2.62 %Yield	Qualifier Qualifier Qualifier	Count Uncert. $(2\sigma+/-)$ 0.151 <u>Limits</u> 40 - 110 C) Count Uncert. $(2\sigma+/-)$ 0.823 Limits	Uncert. (2σ+/-) 0.154 Total Uncert. (2σ+/-)	1.00	0.167 MDC	pCi/L Unit	Prepared 10/06/22 09:52 Prepared 10/06/22 09:52 Prepared 10/06/22 10:12 Prepared 10/06/22 10:12 Prepared	Matrix: <u>Analyzed</u> 10/28/22 13:46 <u>Analyzed</u> 10/28/22 13:46 <u>Analyzed</u> 10/20/22 12:03 <u>Analyzed</u>	Dil Fac1Dil Fac1Dil Fac1Dil Fac
226 + 228 Client Sample II Date Collected: 09// Date Received: 09// Method: EPA 903. Analyte Radium-226 Carrier Ba Carrier Method: EPA 904. Analyte Radium-228 Carrier Ba Carrier Ba Carrier Ba Carrier	D: 474860 27/22 16:06 29/22 12:30 0 - Radium - Result 0.339 - %Yield 52.9 0 - Radium - Result 2.62 - %Yield 52.9	Qualifier Qualifier -228 (GFP -228 (GFP	$\begin{tabular}{ c c c c } \hline Count \\ \hline Uncert. \\ \hline (2\sigma+/-) \\ \hline 0.151 \\ \hline \\ $	Uncert. (2σ+/-) 0.154 Total Uncert. (2σ+/-)	1.00	0.167 MDC	pCi/L Unit	Prepared 10/06/22 09:52 Prepared 10/06/22 09:52 Prepared 10/06/22 10:12 Prepared 10/06/22 10:12	Matrix: Analyzed 10/28/22 13:46 Analyzed 10/28/22 13:46 10/28/22 13:46 Analyzed 10/20/22 12:03	Dil Fac1Dil Fac1Dil Fac1Dil Fac11111111
226 + 228 Client Sample II Date Collected: 09// Date Received: 09// Method: EPA 903. Analyte Radium-226 Carrier Ba Carrier Method: EPA 904. Analyte Radium-228 Carrier	D: 474860 27/22 16:06 29/22 12:30 0 - Radium - Result 0.339 - %Yield 52.9 0 - Radium - Result 2.62 %Yield	Qualifier Qualifier -228 (GFP -228 (GFP	Count Uncert. $(2\sigma+/-)$ 0.151 <u>Limits</u> 40 - 110 C) Count Uncert. $(2\sigma+/-)$ 0.823 Limits	Uncert. (2σ+/-) 0.154 Total Uncert. (2σ+/-)	1.00	0.167 MDC	pCi/L Unit	Prepared 10/06/22 09:52 Prepared 10/06/22 09:52 Prepared 10/06/22 10:12 Prepared 10/06/22 10:12 Prepared	Matrix: Analyzed 10/28/22 13:46 Analyzed 10/28/22 13:46 10/28/22 13:46 Analyzed 10/20/22 12:03	Dil Fac1Dil Fac1Dil Fac1Dil Fac
226 + 228 Client Sample II Date Collected: 09// Date Received: 09// Method: EPA 903. Analyte Radium-226 Carrier Ba Carrier Method: EPA 904. Analyte Radium-228 Carrier Ba Carrier Ba Carrier Ba Carrier	D: 474860 27/22 16:06 29/22 12:30 0 - Radium	Qualifier Qualifier Qualifier Qualifier Qualifier	Count Uncert. $(2\sigma + / -)$ 0.151 Limits 40 - 110 C) Count Uncert. $(2\sigma + / -)$ 0.823 Limits 40 - 110 40 - 110	Uncert. (2σ+/-) 0.154 Total Uncert. (2σ+/-) 0.857	1.00 RL 1.00	0.167 MDC 0.998	pCi/L Unit	Prepared 10/06/22 09:52 Prepared 10/06/22 09:52 Prepared 10/06/22 10:12 Prepared 10/06/22 10:12	Matrix: Analyzed 10/28/22 13:46 Analyzed 10/28/22 13:46 10/28/22 13:46 Analyzed 10/20/22 12:03	Dil Fac1Dil Fac1Dil Fac1Dil Fac11111111
226 + 228 Client Sample II Date Collected: 09// Date Received: 09// Method: EPA 903. Analyte Radium-226 Carrier Ba Carrier Method: EPA 904. Analyte Radium-228 Carrier Ba Carrier Ba Carrier Ba Carrier Ba Carrier	D: 474860 27/22 16:06 29/22 12:30 0 - Radium	Qualifier Qualifier Qualifier Qualifier Qualifier	Count Uncert. $(2\sigma + / -)$ 0.151 Limits 40 - 110 C) Count Uncert. $(2\sigma + / -)$ 0.823 Limits 40 - 110 40 - 110	Uncert. (2σ+/-) 0.154 Total Uncert. (2σ+/-) 0.857	1.00 RL 1.00	0.167 MDC 0.998	pCi/L Unit	Prepared 10/06/22 09:52 Prepared 10/06/22 09:52 Prepared 10/06/22 10:12 Prepared 10/06/22 10:12	Matrix: Analyzed 10/28/22 13:46 Analyzed 10/28/22 13:46 10/28/22 13:46 Analyzed 10/20/22 12:03	Dil Fac1Dil Fac1Dil Fac1Dil Fac11111111

			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2 σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium	2.96		0.837	0.871	5.00	0.998 pCi/L		10/31/22 10:01	1
226 + 228									

Eurofins St. Louis

Client Sample ID: 474862 SC_10 Date Collected: 09/26/22 11:41 Date Received: 09/29/22 12:30

9

Lab Sample ID: 160-47252-6 Matrix: Water

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fa
Radium-226	0.204	U	0.175	0.176	1.00	0.262	pCi/L	10/06/22 09:52	10/28/22 13:46	
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fa
Ba Carrier	45.1		40 - 110					10/06/22 09:52	10/28/22 13:46	
Method: EPA 90	4.0 - Radium	-228 (GFP		T . (.)						
Method: EPA 90	4.0 - Radium	-228 (GFP	C) Count Uncert.	Total Uncert.						
Method: EPA 90		-228 (GFP Qualifier	Count		RL	MDC	Unit	Prepared	Analyzed	Dil Fa
		Qualifier	Count Uncert.	Uncert.	RL 1.00		Unit pCi/L	Prepared 10/06/22 10:12	Analyzed 10/20/22 12:03	Dil Fa
Analyte		Qualifier	Count Uncert. (2σ+/-)	Uncert. (2σ+/-)						
Analyte Radium-228		Qualifier G	Count Uncert. (2σ+/-) 1.08	Uncert. (2σ+/-)				10/06/22 10:12	10/20/22 12:03	Dil Fa Dil Fa

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

Analyte	Result	Qualifier	Count Uncert. (2σ+/-)	Total Uncert. (2σ+/-)	RL	MDC Unit	it Prepared	Analvzed	Dil Fac
Combined Radium 226 + 228	2.87		1.09	1.11	5.00	1.41 pCi/		10/31/22 10:01	1

Client Sample ID: 474863 SC_13 Date Collected: 09/26/22 13:58

Date Received: 09/29/22 12:30

Method: EPA 903.0 - Radium-226 (GFPC)

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0260	U	0.186	0.186	1.00	0.354	pCi/L	10/06/22 09:52	10/28/22 15:23	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	45.8		40 - 110					10/06/22 09:52	10/28/22 15:23	1

Method: EPA 904.0 - Radium-228 (GFPC)

Analyte	Result	Qualifier	Count Uncert. (2σ+/-)	Total Uncert. (2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	1.68	G	1.07	1.08	1.00	1.60	pCi/L	10/06/22 10:12	10/20/22 12:03	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	45.8		40 - 110					10/06/22 10:12	10/20/22 12:03	1
Y Carrier	80.7		40 - 110					10/06/22 10:12	10/20/22 12:03	1

Lab Sample ID: 160-47252-7

Matrix: Water

Client Sample Results

lient: Colorado Spri		S	Cilei	nt Samp	ie kes	uits			Job ID: 160-4	7252-1
roject/Site: CCR La	ndfill									
Client Sample ID Date Collected: 09/2 Date Received: 09/2	26/22 13:58	3						Lab Sample		252-7 Water
Method: TAL-STL I					d Radiun	n -22 8				
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.71		1.09	1.10	5.00	1.60	pCi/L		10/31/22 10:01	1
- Client Sample ID	: 474864	SC 14						Lab Sample	D: 160-47	252-8
Date Collected: 09/2 Date Received: 09/2	26/22 15:05	5								Water
Method: EPA 903.0			C)							
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.606		0.288	0.293	1.00	0.348	pCi/L	10/06/22 09:52	10/28/22 15:25	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	56.4		40 - 110					10/06/22 09:52	10/28/22 15:25	1
Method: EPA 904.0) - Radium	-228 (GFP(2)							
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2 σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	4.23	G	1.36	1.41	1.00	1.61	pCi/L	10/06/22 10:12		1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	56.4		40 - 110					10/06/22 10:12	10/20/22 12:03	1
Y Carrier	84.1		40 - 110					10/06/22 10:12	10/20/22 12:03	1
Method: TAL-STL I	Ra226 Ra:	228 - Comł	oined Radi	um-226 an	d Radiun	n-228				
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2 σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	4.84		1.39	1.44	5.00	1.61	pCi/L		10/31/22 10:01	1
Client Sample ID	: 474865	5 SC 11						Lab Sample	D: 160-47	252-9
										Water
	26/22 16:20)								
Client Sample ID Date Collected: 09/2 Date Received: 09/2										
Date Collected: 09/2 Date Received: 09/2	9/22 12:30)	C)							
Date Collected: 09/2 Date Received: 09/2	9/22 12:30)	C) Count	Total						
Date Collected: 09/2 Date Received: 09/2	9/22 12:30)		Total Uncert.						
Date Collected: 09/2 Date Received: 09/2	9/22 12:30) - Radium)	Count		RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Date Collected: 09/2 Date Received: 09/2 Method: EPA 903.0	9/22 12:30) - Radium) I-226 (GFP(Qualifier	Count Uncert.	Uncert.	RL 1.00	MDC 0.417		Prepared 10/06/22 09:52	Analyzed 10/28/22 15:26	Dil Fac
Date Collected: 09/2 Date Received: 09/2 Method: EPA 903.0 Analyte	9/22 12:30 - Radium Result 0.245) I-226 (GFP(Qualifier	Count Uncert. (2σ+/-)	Uncert. (2σ+/-)						

Total

Uncert.

(2σ+/-)

1.44

RL

1.00

MDC Unit

2.24 pCi/L

Analyte

Carrier

Ba Carrier

Y Carrier

Radium-228

Client Sample ID: 474865 SC_11 Date Collected: 09/26/22 16:20 Date Received: 09/29/22 12:30

Method: EPA 904.0 - Radium-228 (GFPC)

l ah	Samn	le	ID.	160

Prepared

Prepared

 160-47252-9
 3

 Matrix: Water
 4

Dil Fac

Dil Fac

Matrix: Water

Dil Fac

Dil Fac

1

1

1

1

1

Job ID: 160-47252-1

Analyzed

Analyzed

10/06/22 10:12 10/20/22 12:04

10/06/22 10:12 10/20/22 12:04

10/06/22 10:12 10/20/22 12:04

Lab Sample ID: 160-47252-10

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

Result Qualifier

%Yield Qualifier

42.2

83.0

1.73 UG

Count

Uncert.

(20+/-)

Limits

40 - 110

40 - 110

1.43

			Count	Total					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.97	U	1.45	1.46	5.00	2.24 pCi/L		10/31/22 10:01	1

Client Sample ID: 474866 SC_12 Date Collected: 09/26/22 12:30 Date Received: 09/29/22 12:30

Method: EPA 903.0 - Radium-226 (GFPC) Count Total Uncert. Uncert. Analyte **Result Qualifier** (2σ+/-) (2**σ**+/-) RL MDC Unit Prepared Analyzed Radium-226 0.0873 U 0.179 0.180 1.00 0.321 pCi/L 10/06/22 09:52 10/28/22 15:26 Carrier %Yield Qualifier Limits Prepared Analyzed 10/06/22 09:52 10/28/22 15:26 Ba Carrier 42.4 40 - 110

Method: EPA 904.0 - Radium-228 (GFPC)

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2 σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	3.29	G	1.20	1.24	1.00	1.51	pCi/L	10/06/22 10:12	10/20/22 12:04	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	42.4		40 - 110					10/06/22 10:12	10/20/22 12:04	1
Y Carrier	86.4		40 - 110					10/06/22 10:12	10/20/22 12:04	1

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	3.38		1.21	1.25	5.00	1.51	pCi/L		10/31/22 10:01	1

Client Sample ID: 474867 SC_12 DUPLICATE Date Collected: 09/26/22 12:30 Date Received: 09/29/22 12:30

Lab Sample ID: 160-47252-11 Matrix: Water

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.132	U	0.198	0.199	1.00	0.339	pCi/L	10/06/22 09:52	10/28/22 15:26	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	43.9		40 - 110					10/06/22 09:52	10/28/22 15:26	1

			Uncert.	Uncert.							1
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac	
Radium-228	3.66	G	1.17	1.22	1.00	1.35	pCi/L	10/06/22 10:12	10/20/22 12:04	1	
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac	
Ba Carrier	43.9		40 - 110					10/06/22 10:12	10/20/22 12:04	1	
Y Carrier	83.0		40 - 110					10/06/22 10:12	10/20/22 12:04	1	

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2 σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	3.79		1.19	1.24	5.00	1.35	pCi/L		10/31/22 10:01	1

QC Sample Results

Job ID: 160-47252-1

10

Method: 903.0 - Radium-226 (GFPC)

Lab Sample		60-5848	52/1-A						Clie		le ID: Metho	
Matrix: Wat											Prep Type: T	
Analysis Ba	atch: 5876	26									Prep Batch:	58485
				Count	Total							
		MB	MB	Uncert.	Uncert.							
Analyte			Qualifier	(2σ+/-)	(2 σ +/-)	RL	MDC	Unit	P	repared	Analyzed	Dil Fa
Radium-226		-0.05928	U	0.0627	0.0629	1.00	0.148	pCi/L	10/0	06/22 09:52	10/28/22 11:29	
		МВ	МВ									
Carrier		%Yield	Qualifier	Limits					P	Prepared	Analyzed	Dil Fa
Ba Carrier		90.4		40 - 110					10/0	06/22 09:52	10/28/22 11:29	
			050/0 4					0				• • • • • •
Lab Sample Matrix: Wat		160-584	852/2-A					CIIE	ent Sa		Lab Control S Prep Type: To	
Analysis Ba		20									Prep Batch:	
Allalysis Da	aten. 5070	20				Total					Prep Batch.	30403
			Spike	1.05	LCS	Uncert.					%Rec	
Analyte			Added	Result		(2σ+/-)	RL	MDC	Unit	%Rec	Limits	
Radium-226				11.05		1.16	1.00	0.116		97	75 - 125	
(adidin-220			11.0	11.00		1.10	1.00	0.110	poi/L	51	10-120	
	LCS	LCS										
Carrier	%Yield	Qualifier	Limits									
ethod: 90 .ab Sample Matrix: Wate	e ID: MB 1 er	60-5848		;)					Clie	ent Samp	ole ID: Method Prep Type: T	otal/N
lethod: 90 Lab Sample Matrix: Wate)4.0 - Ra 9 ID: MB 1 er	60-5848	228 (GFPC		Total				Clie	ent Samp		otal/N
lethod: 90 Lab Sample Matrix: Wate)4.0 - Ra 9 ID: MB 1 er	60-5848 14	228 (GFPC 54/1-A	Count	Total				Clie	ent Samp	Prep Type: Te	otal/N/
lethod: 90 Lab Sample Matrix: Wate Analysis Ba)4.0 - Ra 9 ID: MB 1 er	60-5848 14 мв	228 (GFPC 54/1-A MB	Count Uncert.	Uncert.		MDC	Unit			Prep Type: T Prep Batch:	otal/N/ 58485
lethod: 90 Lab Sample Matrix: Wate Analysis Ba Analyte)4.0 - Ra 9 ID: MB 1 er	60-5848 14 MB Result	228 (GFPC 54/1-A	Count Uncert. (2σ+/-)	Uncert. (2σ+/-)		MDC		P	Prepared	Prep Type: To Prep Batch: Analyzed	otal/N/ 58485 Dil Fa
lethod: 90 Lab Sample Matrix: Wate Analysis Ba Analyte)4.0 - Ra 9 ID: MB 1 er	60-5848 14 <u>MB</u> <u>Result</u> 0.8138	228 (GFPC 54/1-A MB Qualifier	Count Uncert.	Uncert.	RL 1.00	MDC 0.481		P	Prepared	Prep Type: T Prep Batch:	otal/N/ 58485 Dil Fa
lethod: 90 Lab Sample Matrix: Wate Analysis Ba Analyte Radium-228)4.0 - Ra 9 ID: MB 1 er	60-5848 14 MB <u>Result</u> 0.8138 <i>MB</i>	228 (GFPC 54/1-A MB Qualifier MB	Count Uncert. (2σ+/-) 0.365	Uncert. (2σ+/-)				P 10/0	Prepared 06/22 10:12	Prep Type: To Prep Batch: Analyzed 10/20/22 11:57	otal/N/ 58485 Dil Fa
lethod: 90 Lab Sample Matrix: Wate Analysis Ba Analyte Radium-228 Carrier)4.0 - Ra 9 ID: MB 1 er	60-5848 14 MB Result 0.8138 MB %Yield	228 (GFPC 54/1-A MB Qualifier	Count Uncert. (2σ+/-) 0.365	Uncert. (2σ+/-)				P 10/0	Prepared 06/22 10:12 Prepared	Prep Type: To Prep Batch: Analyzed 10/20/22 11:57 Analyzed	otal/N/ 58485 Dil Fa
lethod: 90 Lab Sample Matrix: Wate Analysis Ba Analyte Radium-228 Carrier Ba Carrier)4.0 - Ra 9 ID: MB 1 er	60-5848 14 MB Result 0.8138 MB %Yield 90.4	228 (GFPC 54/1-A MB Qualifier MB	Count Uncert. (2σ+/-) 0.365 Limits 40 - 110	Uncert. (2σ+/-)				— P 10/0 10/0	Prepared)6/22 10:12 Prepared)6/22 10:12	Analyzed 10/20/22 11:57 Analyzed 10/20/22 11:57	Dil Fa
lethod: 90 Lab Sample Matrix: Wate Analysis Ba Analyte Radium-228 Carrier Ba Carrier)4.0 - Ra 9 ID: MB 1 er	60-5848 14 MB Result 0.8138 MB %Yield	228 (GFPC 54/1-A MB Qualifier MB	Count Uncert. (2σ+/-) 0.365	Uncert. (2σ+/-)				— P 10/0 10/0	Prepared)6/22 10:12 Prepared)6/22 10:12	Prep Type: To Prep Batch: Analyzed 10/20/22 11:57 Analyzed	Dil Fa
lethod: 90 Lab Sample Matrix: Wate Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier	94.0 - Ra 9 ID: MB 1 er atch: 5866	60-5848 14 MB Result 0.8138 MB %Yield 90.4 84.1	228 (GFPC 54/1-A MB Qualifier MB Qualifier	Count Uncert. (2σ+/-) 0.365 Limits 40 - 110	Uncert. (2σ+/-)			pCi/L	— P 10/0 10/0 10/0	Prepared 06/22 10:12 Prepared 06/22 10:12 06/22 10:12	Prep Type: Tr Prep Batch: 10/20/22 11:57 Analyzed 10/20/22 11:57 10/20/22 11:57	otal/NA 58485 Dil Fa Dil Fa
lethod: 90 Lab Sample Matrix: Wate Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample	94.0 - Ra e ID: MB 1 er atch: 5866	60-5848 14 MB Result 0.8138 MB %Yield 90.4 84.1	228 (GFPC 54/1-A MB Qualifier MB Qualifier	Count Uncert. (2σ+/-) 0.365 Limits 40 - 110	Uncert. (2σ+/-)			pCi/L	— P 10/0 10/0 10/0	Prepared)6/22 10:12 Prepared)6/22 10:12)6/22 10:12 mple ID:	Analyzed 10/20/22 11:57 Analyzed 10/20/22 11:57 10/20/22 11:57 10/20/22 11:57 10/20/22 11:57 10/20/22 11:57 Lab Control \$	otal/N/ 58485 Dil Fa Dil Fa
lethod: 90 Lab Sample Matrix: Wate Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Wate	94.0 - Ra e ID: MB 1 er atch: 5866	60-5848 14 MB Result 0.8138 MB %Yield 90.4 84.1 160-584	228 (GFPC 54/1-A MB Qualifier MB Qualifier	Count Uncert. (2σ+/-) 0.365 Limits 40 - 110	Uncert. (2σ+/-)			pCi/L	— P 10/0 10/0 10/0	Prepared)6/22 10:12 Prepared)6/22 10:12)6/22 10:12 mple ID:	Analyzed 10/20/22 11:57 Analyzed 10/20/22 11:57 10/20/22 11:57 10/20/22 11:57 Lab Control S Prep Type: To	otal/NJ 58485 Dil Fa Dil Fa Dil Fa
lethod: 90 Lab Sample Matrix: Wate Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Wate	94.0 - Ra e ID: MB 1 er atch: 5866	60-5848 14 MB Result 0.8138 MB %Yield 90.4 84.1 160-584	228 (GFPC 54/1-A MB Qualifier MB Qualifier	Count Uncert. (2σ+/-) 0.365 Limits 40 - 110	Uncert. (2σ+/-)			pCi/L	— P 10/0 10/0 10/0	Prepared)6/22 10:12 Prepared)6/22 10:12)6/22 10:12 mple ID:	Analyzed 10/20/22 11:57 Analyzed 10/20/22 11:57 10/20/22 11:57 10/20/22 11:57 10/20/22 11:57 10/20/22 11:57 Lab Control \$	otal/NJ 58485 Dil Fa Dil Fa Dil Fa
lethod: 90 Lab Sample Matrix: Wate Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Wate	94.0 - Ra e ID: MB 1 er atch: 5866	60-5848 14 MB Result 0.8138 MB %Yield 90.4 84.1 160-584	228 (GFPC 54/1-A MB Qualifier MB Qualifier 854/2-A	Count Uncert. (2σ+/-) 0.365 Limits 40 - 110 40 - 110	Uncert. (2σ+/-) 0.373	1.00		pCi/L	— P 10/0 10/0 10/0	Prepared)6/22 10:12 Prepared)6/22 10:12)6/22 10:12 mple ID:	Analyzed 10/20/22 11:57 Analyzed 10/20/22 11:57 10/20/22 11:57 10/20/22 11:57 Lab Control S Prep Type: To	otal/N/ 58485 Dil Fa Dil Fa Dil Fa
lethod: 90 Lab Sample Matrix: Wate Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Y Carrier Lab Sample Matrix: Wate Analysis Ba	94.0 - Ra e ID: MB 1 er atch: 5866	60-5848 14 MB Result 0.8138 MB %Yield 90.4 84.1 160-584	228 (GFPC 54/1-A MB Qualifier MB Qualifier	Count Uncert. (2σ+/-) 0.365 Limits 40 - 110 40 - 110	Uncert. (2σ+/-) 0.373	1.00		pCi/L	P 10/0 10/0 10/0 ent Sa	Prepared)6/22 10:12 Prepared)6/22 10:12)6/22 10:12 mple ID:	Prep Type: Tr Prep Batch: Analyzed 10/20/22 11:57 <i>Analyzed</i> 10/20/22 11:57 10/20/22 11:57 Lab Control S Prep Type: Tr Prep Batch:	otal/NJ 58485 Dil Fa Dil Fa Dil Fa
lethod: 90 Lab Sample Matrix: Wate Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Wate Analysis Ba	94.0 - Ra e ID: MB 1 er atch: 5866	60-5848 14 MB Result 0.8138 MB %Yield 90.4 84.1 160-584	228 (GFPC 54/1-A MB Qualifier MB Qualifier 854/2-A Spike	Count Uncert. (2σ+/-) 0.365 Limits 40 - 110 40 - 110	Uncert. (2σ+/-) 0.373	1.00 Total Uncert.	0.481	pCi/L Clie	— P 10/0 10/0 10/0 ent Sa	Prepared 06/22 10:12 Prepared 06/22 10:12 06/22 10:12 06/22 10:12 mple ID:	Prep Type: T Prep Batch: Analyzed 10/20/22 11:57 <i>Analyzed</i> 10/20/22 11:57 10/20/22 11:57 Lab Control S Prep Type: T Prep Batch: %Rec	otal/NJ 58485 Dil Fa Dil Fa Dil Fa
lethod: 90 Lab Sample Matrix: Wate Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Wate Analysis Ba	94.0 - Ra 1D: MB 1 er atch: 5866 1D: LCS er atch: 5866 	60-5848 14 MB <u>Result</u> 0.8138 <i>MB</i> %Yield 90.4 84.1 160-584	228 (GFPC 54/1-A MB Qualifier MB Qualifier 854/2-A Spike Added	Count Uncert. (2σ+/-) 0.365 <i>Limits</i> 40 - 110 40 - 110 40 - 110 LCS Result	Uncert. (2σ+/-) 0.373	1.00 Total Uncert. (2σ+/-)	0.481	pCi/L Clie	— P 10/0 10/0 10/0 ent Sa	Prepared 06/22 10:12 Prepared 06/22 10:12 06/22 10:12 06/22 10:12 mple ID: %Rec	Prep Type: Tr Prep Batch: <u>Analyzed</u> 10/20/22 11:57 <u>Analyzed</u> 10/20/22 11:57 10/20/22 11:57 Lab Control S Prep Type: Tr Prep Batch: %Rec Limits	otal/N/ 58485 Dil Fa Dil Fa Dil Fa
lethod: 90 Lab Sample Matrix: Wate Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Wate Analysis Ba Analyte Radium-228	94.0 - Ra a ID: MB 1 er atch: 5866 b ID: LCS er atch: 5866 	60-5848 14 MB Result 0.8138 <i>MB</i> %Yield 90.4 84.1 160-584 14 14	228 (GFPC 54/1-A MB Qualifier MB Qualifier 854/2-A 854/2-A Spike Added 8.52	Count Uncert. (2σ+/-) 0.365 <i>Limits</i> 40 - 110 40 - 110 40 - 110 LCS Result	Uncert. (2σ+/-) 0.373	1.00 Total Uncert. (2σ+/-)	0.481	pCi/L Clie	— P 10/0 10/0 10/0 ent Sa	Prepared 06/22 10:12 Prepared 06/22 10:12 06/22 10:12 06/22 10:12 mple ID: %Rec	Prep Type: Tr Prep Batch: <u>Analyzed</u> 10/20/22 11:57 <u>Analyzed</u> 10/20/22 11:57 10/20/22 11:57 Lab Control S Prep Type: Tr Prep Batch: %Rec Limits	otal/N/ 58485 Dil Fa Dil Fa Dil Fa
Ba Carrier Iethod: 90 Lab Sample Matrix: Wate Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Wate Analysis Ba Analysis Ba Analyte Radium-228 Carrier Ba Carrier Ba Carrier Ba Carrier Ba Carrier	94.0 - Ra a ID: MB 1 er atch: 5866 b ID: LCS er atch: 5866 	60-5848 14 MB <u>Result</u> 0.8138 <i>MB</i> %Yield 90.4 84.1 160-584	228 (GFPC 54/1-A MB Qualifier MB Qualifier 854/2-A 854/2-A Spike Added 8.52	Count Uncert. (2σ+/-) 0.365 Limits 40 - 110 40 - 110 40 - 110 LCS Result 11.45	Uncert. (2σ+/-) 0.373	1.00 Total Uncert. (2σ+/-)	0.481	pCi/L Clie	— P 10/0 10/0 10/0 ent Sa	Prepared 06/22 10:12 Prepared 06/22 10:12 06/22 10:12 06/22 10:12 mple ID: %Rec	Prep Type: Tr Prep Batch: <u>Analyzed</u> 10/20/22 11:57 <u>Analyzed</u> 10/20/22 11:57 10/20/22 11:57 Lab Control S Prep Type: Tr Prep Batch: %Rec Limits	otal/NA 584854 <u>Dil Fa</u> <u>Dil Fa</u> Sample otal/NA

Prep Type

Total/NA

Matrix

Water

Client Sample ID

474856 CC_1

474857 FC 1

474858 FC_2

474859 FC_3A

474860 FC_3B

474862 SC_10

474863 SC_13

474864 SC_14

474865 SC 11

474866 SC_12

Method Blank

Lab Control Sample

474867 SC_12 DUPLICATE

Prep Batch: 584852

Lab Sample ID

160-47252-1

160-47252-2

160-47252-3

160-47252-4

160-47252-5

160-47252-6

160-47252-7

160-47252-8

160-47252-9

160-47252-10

160-47252-11

Rad

Prep Batch

Method

PrecSep-21

10 11

LCS 160-584852/2-A Prep Batch: 584854

MB 160-584852/1-A

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-47252-1	474856 CC_1	Total/NA	Water	PrecSep_0	
160-47252-2	474857 FC_1	Total/NA	Water	PrecSep_0	
160-47252-3	474858 FC_2	Total/NA	Water	PrecSep_0	
160-47252-4	474859 FC_3A	Total/NA	Water	PrecSep_0	
160-47252-5	474860 FC_3B	Total/NA	Water	PrecSep_0	
160-47252-6	474862 SC_10	Total/NA	Water	PrecSep_0	
160-47252-7	474863 SC_13	Total/NA	Water	PrecSep_0	
160-47252-8	474864 SC_14	Total/NA	Water	PrecSep_0	
160-47252-9	474865 SC_11	Total/NA	Water	PrecSep_0	
160-47252-10	474866 SC_12	Total/NA	Water	PrecSep_0	
160-47252-11	474867 SC_12 DUPLICATE	Total/NA	Water	PrecSep_0	
MB 160-584854/1-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-584854/2-A	Lab Control Sample	Total/NA	Water	PrecSep_0	

Method: 903.0 - Radium-226 (GFPC) Matrix: Water

Prep Type: Total/NA Percent Yield (Acceptance Limits) Ba

		Ва	
Lab Sample ID	Client Sample ID	(40-110)	
160-47252-1	474856 CC_1	74.3	
160-47252-2	474857 FC_1	85.0	
160-47252-3	474858 FC_2	58.1	
160-47252-4	474859 FC_3A	73.8	
160-47252-5	474860 FC_3B	52.9	
160-47252-6	474862 SC_10	45.1	
160-47252-7	474863 SC_13	45.8	
160-47252-8	474864 SC_14	56.4	
160-47252-9	474865 SC_11	42.2	
160-47252-10	474866 SC_12	42.4	
160-47252-11	474867 SC_12 DUPLICATE	43.9	
LCS 160-584852/2-A	Lab Control Sample	90.0	
MB 160-584852/1-A	Method Blank	90.4	
Tracer/Carrier Leger	ıd		

Ba = Ba Carrier

Method: 904.0 - Radium-228 (GFPC) Matrix: Water

Percent Yield (Acceptance Limits) Ва Υ (40-110) (40-110) Lab Sample ID **Client Sample ID** 160-47252-1 474856 CC_1 74.3 81.9 160-47252-2 474857 FC 1 85.0 83.7 160-47252-3 474858 FC 2 58.1 81.1 160-47252-4 474859 FC_3A 73.8 80.4 160-47252-5 474860 FC 3B 52.9 82.6 160-47252-6 474862 SC_10 45.1 85.6 160-47252-7 474863 SC_13 45.8 80.7 160-47252-8 474864 SC_14 84.1 56.4 160-47252-9 474865 SC_11 42.2 83.0 160-47252-10 474866 SC_12 42.4 86.4 474867 SC 12 DUPLICATE 160-47252-11 43.9 83.0 LCS 160-584854/2-A Lab Control Sample 90.0 83.0 MB 160-584854/1-A Method Blank 90.4 84.1

Tracer/Carrier Legend

Ba = Ba Carrier

Y = Y Carrier

Job ID: 160-47252-1

Prep Type: Total/NA

APPENDIX D

Statistical Analysis Report

Statistical Analysis Report for CSU Clear Spring Ranch 2022 CCR Program, Annual Update, Ash Landfill Network

Kirk Cameron, Ph.D., MacStat Consulting, Ltd.

2023-01-23

Contents

1	Inti	roduction	2
2	Sta	tistical Analysis Approach: Appendix III Parameters	3
	2.1	Background Statistical Models and Prediction Limits	4
	2.2	Comparing Compliance Data Against Prediction Limits	7
	2.3	Summary of Appendix III Statistical Analysis	8
3	Sta	tistical Analysis Approach: Appendix IV Parameters	9
	3.1	Developing and Computing Groundwater Protection Standards (GWPS)	9
	3.2	Computing Trend Lines and Confidence Interval Bands	11
	3.3	Comparing Confidence Interval Bands Against GWPS	13
	3.4	Summary of Appendix IV Statistical Analysis	13
4	Ref	erences	14
\mathbf{A}	ppen	dix A: Exploratory Plots	15
	Tim	e Series Plots	16
	Box	Plots	37
A	ppen	dix B: Supporting Graphics	58
	Prec	liction Limit Outcome Plots, Appendix III Parameters	59
	Con	fidence Interval Band Plots, Appendix IV Parameters	66

1 Introduction

This report summarizes the statistical analysis performed on groundwater quality constituents monitored during 2022 of the Coal Combustion Residuals (CCR) Rule's groundwater monitoring program at the Colorado Springs Utilities (CSU) Clear Spring Ranch Ash Landfill (CSR).

The Clear Spring Ranch Ash Landfill CCR unit is currently in Assessment Monitoring, necessitating monitoring of both the Appendix III and IV constituents listed in **Table 2**. As part of this year's efforts (i.e., 2022), the baseline data sets collected since the first year of the CCR-Rule Program were evaluated in order to establish updated groundwater protection standards (GWPS) on upgradient background data representing Appendix IV constituents, and then to compare 2022 compliance measurements against these statistical limits to assess any statistically significant increases (SSI) above the GWPS. The analysis also established updated prediction limits on upgradient background data for Appendix III constituents, and compared 2022 compliance measurements against these statistical limits to assess any SSIs above background. Summaries of all the statistical test results are provided in subsequent sections of this report.

At the Clear Spring Ranch Ash Landfill network, the sampling results used to compute the background statistics and to identify potential SSIs were obtained from a set of designated background wells (CC-1, FC-1, FC-2, FC-3A, FC-3B) using data collected from June 2016 until September 2022.

Groundwater samples were analyzed for 21 distinct constituents as required under Appendix III and Appendix IV of the CCR Rule (listed in **Table 2**). Only non-filtered sample results were utilized for the statistical analysis.

As required by the USEPA's Coal Combustion Residuals (CCR) Rule section describing the Assessment Monitoring Program (§257.95), test results for the 2022 Appendix IV Assessment Monitoring events were compared to the GWPS for determination of any exceedances. Also, test results for the Appendix III parameters were compared against the updated background prediction limits.

Included in this report are 'Traffic Light' matrices to facilitate an at-a-glance identification of any statistically significant exceedances and to promote intra-company follow-up assessments of the possible causes and to plan for mitigation actions, whenever warranted. Sample analytical results of CCR-Rule Appendix III and Appendix IV constituents obtained from each of the monitoring wells and events were used to perform the statistical analysis and generate the graphs shown in this report. The current CCR Rule groundwater monitoring network, as Certified by a Professional Engineer, is presented in **Table 1**.

The 'R' Statistical Analysis package (www.r-project.org) in conjunction with R-Studio (www.rstudio.com), both popular public domain software products, were used in the production of the statistical values and graphs. Data dumps from CSU's Database were used to populate the R-based statistical analyses.

Background	Downgradient
CC-1	SC-10
FC-1	SC-11
FC-2	SC-12
FC-3A	SC-13
FC-3B	SC-14

 Table 1: CCR Rule Monitoring Network

For this year's efforts, the baseline datasets of the CCR-Rule groundwater monitoring program were augmented with routine monitoring samples in order to update the background data set. The background data were then utilized to develop both updated prediction limits and statistically-derived GWPS in those cases where site-specific background levels naturally exceed published regulatory limits. Finally, data from the compliance wells were statistically compared either to prediction limits for Appendix III parameters or to the GWPS for Appendix IV parameters to determine whether any statistical limits or standards were exceeded.

At the Clear Spring Ranch Ash Landfill CCR network, the sampling results used to compute the background statistics were obtained only from designated background wells using historical data that were first screened for possible trends or shifts in concentration levels over time. Any early data exhibiting a substantially different pattern or average concentration level than more recent data were excluded from the calculations. The cutoff date used for selecting background data was determined on a constituent by constituent basis, but was designed to include as much data as possible reflecting current groundwater conditions (see **Table 2**)

Groundwater samples were analyzed for a total of 21 distinct constituents, as required for the CCR monitoring program. Fluoride is monitored under both Appendices. Descriptive graphical summaries of all the data are presented in **Appendix A**. Time series plots of each well-constituent pair display the individual measurement results, while side-by-side boxplots, colored by gradient, allow visual comparisons between upgradient or background wells versus downgradient locations, relative to an overlaid regulatory limit (REGLIM) – either the CCR Rule Standard or the MCL – when applicable.

USEPA's Unified Guidance document on the statistical analysis of groundwater monitoring data (USEPA 2009) discusses recommended strategies for statistical evaluations during Detection and Assessment Monitoring. Of note, it is a 'best-practice' when using prediction limits to always implement some form of retesting, in order to avoid potential false positive results and to confirm real changes in groundwater quality. Under this framework, a statistically significant increase (SSI) is identified only when both the routine observation and any resamples exceed the prediction limit.

In Assessment Monitoring, confidence-interval (CI) bands are a recommended technique for performing statistical comparisons to GWPS. In particular, trends at downgradient wells in analytical concentrations of required parameters can be plotted and used to estimate CI bands, which in turn can be compared against their respective GWPS. A statistically significant increase (SSI) is found if and only if the lower limit of the CI band exceeds the GWPS for the most recent Assessment Monitoring sampling event.

2 Statistical Analysis Approach: Appendix III Parameters

CSU has established a statistical testing approach within its CCR detection monitoring program using the following decision logic:

- 1. For each Appendix III parameter and compliance well location, a comparison is made between each routinely collected sample and a site-specific upper prediction limit (UPL) computed from upgradient background data (or for pH, against a site-specific prediction interval).
- 2. If the routine observation exceeds the upper prediction limit (or for pH, is lower than the lower prediction limit), a potential SSI is identified. If the routine observation is within the bounds of the UPL or prediction interval, the test passes.

Constituent	Begin Date	End Date	Appendix
Boron	2016-06-22	2022-09-27	III
Calcium	2016-06-22	2022-09-27	III
Chloride	2016-06-22	2022-09-27	III
Fluoride	2016-06-22	2022-09-27	III, IV
Sulfate	2016-06-22	2022-09-27	III
pН	2016-06-22	2022-09-27	III
TDS	2016-06-22	2022-09-27	III
Antimony	2016-06-22	2022-09-27	IV
Arsenic	2016-06-22	2022-09-27	IV
Barium	2016-06-22	2022-09-27	IV
Beryllium	2018-03-01	2022-09-27	IV
Cadmium	2018-01-01	2022-09-27	IV
Chromium	2018-01-01	2022-09-27	IV
Cobalt	2019-01-01	2022-09-27	IV
Lead	2019-01-01	2022-09-27	IV
Lithium	2016-06-22	2022-09-27	IV
Mercury	2016-06-22	2022-09-27	IV
Molybdenum	2018-01-01	2022-09-27	IV
Rad226+228	2016-06-22	2022-09-27	IV
Selenium	2016-06-22	2022-09-27	IV
Thallium	2018-01-01	2022-09-27	IV

Table 2: CCR Rule Monitored Constituents

3. In the event of a potential SSI, one resample is compared against the UPL or prediction interval. If the resample falls within the bounds of prediction limit/interval, the test passes. If instead the resample exceeds the bounds of the limit/interval, an SSI is confirmed for that well and constituent.

2.1 Background Statistical Models and Prediction Limits

Beginning with last year's annual report, certain technical improvements were implemented when computing each prediction limit (UPL) or prediction interval, leading to the following steps:

1. All baseline data from designated upgradient or background wells collected through September 2022 were grouped and initially screened for possible outliers. This outlier screening was performed visually on time series plots of the data, as well as systematically via a modified version of Tukey's boxplot rule.

Unlike earlier analyses, however, apparent outliers were not formally tested or removed from the data analysis. Instead, as described in Step 2 below, any possible outliers were *down-weighted* in the statistical calculations, in order to minimize the impact of such values on the UPL estimates.

In case of a nonparametric model, any potential outliers that were flagged were visually compared against observations at other well locations. If similar patterns or measurement ranges were seen, the suspect values were kept in the data. If not, the suspected outliers were excluded from the prediction limit computations. At the Clear Spring Ranch Ash Landfill CCR network, 8 possible nonparametric outliers were flagged in the grouped background data. Any confirmed nonparametric background outliers are listed in **Table 3** below. These values were excluded from the UPL calculations, but *are* shown on the time series plots for the sake of completeness and transparency.

COC	Well	Date	Result	NonDetect Flag	Outlier
Mercury	FC-3B	2018-09-25	0.024	0	TRUE
Calcium	CC-1	2022-03-14	84100	0	TRUE
Calcium	FC-1	2022-03-14	66100	0	TRUE
Calcium	FC-3B	2020-04-06	398000	0	TRUE
Calcium	CC-1	2020-04-06	797000	0	TRUE
Calcium	FC-1	2020-04-06	651000	0	TRUE
Calcium	FC-2	2020-04-06	678000	0	TRUE
Calcium	FC-3A	2020-04-06	711000	0	TRUE

Table 3: Confirmed and Excluded NonParametric Background Outliers

This strategy for handling outliers entails certain benefits, especially since the process of flagging outliers always involves a mixture of art (i.e., professional judgment) and statistical science. In some cases, disputes can arise among stakeholders as to whether specific values ought to be treated as outliers and/or eliminated from statistical analysis. This can especially be true when there is no known physical cause of the apparent outliers (e.g., laboratory or sampling error). Down-weighting done in an objective manner does not exclude any data, yet minimizes the impact of true outliers.

At the Clear Spring Ranch Ash Landfill CCR network, 3 potential parametric outliers were flagged in the grouped background data.

Any potential parametric background outliers are listed in **Table 4** below. If too extreme, these values were down-weighted using the values shown in the Weight column. Note that non-outliers or less extreme outliers generally have weights equal or close to 1.

COC	Well	Date	Result	ND.Flag	Weight	Outlier
Antimony	CC-1	2018-02-14	8	1	1	TRUE
Antimony	FC-1	2018-02-14	8	1	1	TRUE
Barium	FC-3B	2016 - 11 - 15	65.2	0	1	TRUE

Table 4: Down-Weighted Parametric Background Outliers

2. The grouped baseline data were analyzed to determine whether they could be fit to a known statistical model. If so, a quasi-parametric t-bootstrap prediction limit/interval was computed; if not, a nonparametric prediction limit/interval was constructed. Datasets which could not be sufficiently normalized were therefore analyzed by nonparametric means. In the nonparametric case, any apparent outliers were carefully reviewed to determine if they should be removed from the analysis. Unfortunately, formal outlier testing is not possible when the underlying data model is unknown. Outlier removal in this setting comes down to professional judgment and statistical experience.

To account for possible outliers in those datasets that were fit to a known statistical model (i.e., parametric cases), a probability plot of the background dataset was constructed matching the observed data values against quantiles from a standard normal distribution (i.e., z-scores). Then a

robust regression line was fit to the probability plot, to capture the dominant pattern in the bulk of the data while minimizing the impact (or influence) on the estimated line of any extreme or outlying values. Using this robust regression line, the distance between each observed value and the regression line fit was calculated and used to generate a statistical weighting of each data point. Values farther off the line were assigned smaller weights via a standard weighting function, while those closest to the line received the highest weights. These weights (w_i) were subsequently used in computing each prediction limit/interval.

To account for non-normal data, a range of possible mathematical transformations was applied to each background dataset, in order to identify the statistical model that maximized the robust correlation between pairs on the probability plot. The statistical weights described above were ultimately computed using the best-fitting statistical model.

3. The best-fitting statistical model for each COC was used to compute a prediction limit or interval.

When a parametric model is appropriate, on the normalized scale, a prediction interval is computed using the standard normal theory equation:

$$PL = \bar{x} \pm \kappa s$$

where \bar{x} and s represent the mean and standard deviation of the (transformed) observations, and κ is a prediction limit multiplier. If the data have been transformed, the final prediction limit/interval is derived by back-transforming the scaled limit/interval. The prediction limit multiplier is computed as function of several inputs, including the background sample size, the targeted site-wide false positive risk (SWFPR), the configuration of the monitoring network (i.e., number of wells and number of COIs per well), and the retesting strategy implemented at the site (e.g., 1-of-2, etc.).

To account for possible outliers and the statistical weighting described above, a slightly different strategy was implemented to compute an estimate of the prediction limit multiplier, $\hat{\kappa}$. Specifically, a large number of weighted *bootstrap* samples were drawn from the observed data (each bootstrap sample representing a random resampling of the original data, with each sample element being selected *with replacement*). For each bootstrap sample, the weighted mean and weighted standard deviation of the resample were computed to form the following ratio:

$$\left(\frac{x_i - \bar{x}_w}{s_w}\right)$$

where x_i is a random value drawn from the background data with probability equal to its statistical weight w_i . Ultimately, an upper percentile of these ratios gave an estimate of the appropriate prediction limit multiplier, $\hat{\kappa}$, and the bootstrap-t prediction interval was computed as:

$$PL = \bar{x}_w \pm \hat{\kappa} s_w$$

The PLs computed under this methodology utilize all the data, including any possible extreme values, are reasonably robust (i.e., minimally impacted) in the presence of actual outliers, but are *quasi-parametric* — instead of nonparametric — despite the use of the bootstrap technique. This last characteristic implies that the t-bootstrap will result in an accurate PL only when the bulk of the background data can be closely fit to a known statistical model. In cases where an adequate statistical model cannot be identified, a nonparametric PL must be computed instead.

The probability plot correlations mentioned earlier were utilized in testing this method on a large series of datasets to derive an empirical cutoff value of 0.95 for deciding when the t-bootstrap could be applied. Further, the t-bootstrap does not work very well when the dataset is *multi-modal* (i.e., it has multiple peaks or 'humps'), for instance when multiple background wells are grouped together but have much different average concentration levels (perhaps due to a heterogenous aquifer). If a test for unimodality (i.e., single peak like the normal distribution) passed, then correlations of 0.95 and above led to use of the t-bootstrap, while multi-modality or correlations below this cutoff led to calculation of a nonparametric prediction limit/interval. Note that for nonparametric models, the prediction limit is selected as one of the largest of the sample values, often the maximum.

For the Clear Spring Ranch Ash Landfill CCR network, **Table 5** lists the calculated UPLs (and LPL for pH) established for this particular Unit.

COI	Ν	ND.Pct	Model	1-of-m	\mathbf{FPR}	Units	LPL	UPL
Boron	95	0	TBOOT-Log	2	0.0050	ug/L	NA	1716
Calcium	83	0	TBOOT-Seventh Power	2	0.0050	$\rm ug/L$	NA	458500
Chloride	90	0	NP	2	0.0024	$\mathrm{mg/L}$	NA	1680
Fluoride	95	0	NP	2	0.0021	$\mathrm{mg/L}$	NA	0.76
$_{\rm pH}$	95	0	NP	2	0.0043	SU	6.7	7.9
Sulfate	85	0	NP	2	0.0027	$\mathrm{mg/L}$	NA	20700
TDS	90	0	NP	2	0.0024	$\mathrm{mg/L}$	NA	35100

Table 5: Clear Spring Ranch Ash Landfill Interwell Prediction Limits

2.2 Comparing Compliance Data Against Prediction Limits

To assess whether any SSIs occurred during 2022 Detection Monitoring at the Clear Spring Ranch Ash Landfill CCR site, the first routine sampling event from each parameter-well pair was compared against its respective prediction limit. Under a 1-of-2 retesting strategy, the next consecutive sampling round was reserved as a possible resample. This enabled sufficient lag time between any of the routine and resample measurements to assume approximate statistical independence.

If the routine observation exceeded the upper prediction limit (UPL), or for pH, was outside the bounds of the prediction interval on either side, a potential SSI was flagged. Then the reserved resample associated with the routine event was compared against the same limit or interval (when available). Only if the routine observation and its associated resample both were outside the bounds of the prediction limit/interval was a confirmed SSI identified.

Table 6 is a summary of 2022 statistical tests at the Clear Spring Ranch Ash Landfill CCR unit where a confirmed or potential SSI occurred. Plots of the 2022 sampling data overlaid with the constituent-specific prediction limits are shown in **Appendix B**. In these figures, any confirmed SSIs are shown by coloring the routine measurement exceedance in orange and the resample confirmatory exceedance in purple. Potential SSIs are shown by coloring the routine measurement in yellow.

Table 6: 2022 Confirmed or Potential Prediction Limit SSIs at Clear Spring Ranch Ash Landfill CCR Site

COC	Well	Date	Result	Units	Stage	LPL	UPL	\mathbf{SSI}
Boron	SC-11	2022-03-15	2380	$\mathrm{ug/L}$	Sample	NA	1716	YES
Boron	SC-11	2022-09-26	2510	$\mathrm{ug/L}$	Resample	NA	1716	YES

COC	Well	Date	Result	Units	Stage	\mathbf{LPL}	UPL	\mathbf{SSI}
Boron	SC-12	2022-03-15	4020	$\mathrm{ug/L}$	Sample	NA	1716	YES
Boron	SC-12	2022-09-26	4420	$\rm ug/L$	Resample	NA	1716	YES
Fluoride	SC-12	2022-03-15	1.43	$\mathrm{mg/L}$	Sample	NA	0.76	YES
Fluoride	SC-12	2022-09-26	0.93	$\mathrm{mg/L}$	Resample	NA	0.76	YES
Fluoride	SC-13	2022-03-15	1.14	$\mathrm{mg/L}$	Sample	NA	0.76	YES
Fluoride	SC-13	2022-09-26	0.78	$\mathrm{mg/L}$	Resample	NA	0.76	YES

Table 6: 2022 Confirmed or Potential Prediction Limit SSIs at Clear Spring Ranch Ash Landfill CCR Site (continued)

2.3 Summary of Appendix III Statistical Analysis

To facilitate an 'at-a-glance' summary of the prediction limit statistical comparison results, **Table 7** is a 'traffic light' matrix, showing a compact representation of each well location matched against each constituent in Appendix III. This summary is useful in planning for mitigation actions. Green cells indicate that no SSI was observed in 2022. Red cells indicate the opposite: an SSI was flagged during 2022.

At the Clear Spring Ranch Ash Landfill CCR network in 2022, a total of 4 Appendix III SSIs were identified at Program network wells.

	Well Locations								
COC	SC-10	SC-11	SC-12	SC-13	SC-14				
Boron	GRN	RED	RED	GRN	GRN				
Calcium	GRN	\mathbf{GRN}	\mathbf{GRN}	\mathbf{GRN}	GRN				
Chloride	GRN	GRN	GRN	\mathbf{GRN}	GRN				
Fluoride	GRN	GRN	RED	RED	GRN				
\mathbf{pH}	GRN	GRN	\mathbf{GRN}	\mathbf{GRN}	\mathbf{GRN}				
Sulfate	GRN	GRN	GRN	\mathbf{GRN}	GRN				
TDS	GRN	GRN	GRN	GRN	GRN				

Table 7: Traffic Light Matrix for Clear Spring Ranch Ash Landfill CCR Site

Color-Coding Key:

RED = Results outside prediction limit bounds;

GRN = Results within prediction limit bounds;

YLW = Initial results outside bounds (potential SSI)

3 Statistical Analysis Approach: Appendix IV Parameters

The basic steps in the Assessment Monitoring analysis included the following:

- 1. Developing groundwater protection standards (GWPS) for each Appendix IV constituent, using published MCLs and/or water quality limits, along with baseline data from upgradient and background well locations at each CCR site;
- 2. Computing trends and associated confidence interval (CI) bands for each well location and Appendix IV constituent (i.e., for each well-constituent pair); and
- 3. Comparing each CI band against its respective GWPS to assess whether or not a statistically significant exceedance (SSI) occurred.

To accomplish these steps, the data were first summarized and modeled. To handle any non-detects in these calculations, non-detect values were treated as statistically 'left-censored,' with the censoring limit equal to the reporting limit (RL). Then the Kaplan-Meier adjustment method (USEPA 2009) was employed to derive estimated summary statistics that account for the presence of non-detects.

3.1 Developing and Computing Groundwater Protection Standards (GWPS)

USEPA has published maximum contaminant limits (MCL) or alternate regulatory limits for each of the Appendix IV constituents. Consequently, in most cases the Groundwater Protection Standard (GWPS) is equal to the MCL. However, there may be cases where background levels of a constituent exceed the MCL. In these instances, an alternate GWPS must be derived from on-site background levels.

CSU has established GWPS across its CCR program using the following decision logic:

- For each Appendix IV parameter where a GWPS must be established, a comparison is made between the promulgated regulatory limit and a site-specific limit computed from background data.
- If the background-based limit is larger than the promulgated limit, the GWPS is set to the background limit. If the promulgated limit is larger, the GWPS is set to the published value.

In cases where a background limit must be computed, USEPA's Unified Guidance recommends different strategies for computing a background-based GWPS ((USEPA 2009), Section 7.5). One of these strategies — a 95% confidence, 95% coverage upper tolerance limit (UTL) on background — was selected and used to compute the UTL on site-specific background data for each Appendix IV parameter. Then these UTLs were compared against the promulgated regulatory limits to determine the site-specific GWPS.

Each tolerance limit (UTL) was computed in the following manner, using the same technical improvements applied to computation of prediction limits for Appendix III parameters:

1. All baseline data from designated upgradient or background wells collected through September 2022 were grouped and initially screened for possible outliers. This outlier screening was performed visually on time series plots of the data, as well as systematically via a modified version of Tukey's boxplot rule, as described in **Section 2.1**. Apparent outliers were not formally tested or removed from the data analysis, but instead were *down-weighted* in the statistical calculations, in order to minimize the impact of such values on the UTL estimates.

In case of a nonparametric model, any outliers that were flagged were visually compared against observations at other well locations. If similar patterns or measurement ranges were seen, the suspect values were kept in the data. If not, the suspected outliers were excluded from the tolerance limit computations.

2. The grouped baseline data were analyzed to determine whether they could be fit to a known statistical model. If so, a quasi-parametric t-bootstrap UTL was computed; if not, a non-parametric UTL was constructed. Datasets which could not be sufficiently normalized were therefore analyzed by nonparametric means.

To account for possible outliers in each dataset, a probability plot of the background dataset was constructed matching the observed data values against quantiles from a standard normal distribution (i.e., z-scores). Then a *robust* regression line was fit to the probability plot, to capture the dominant pattern in the bulk of the data while minimizing the impact (or influence) on the estimated line of any extreme or outlying values. Using this robust regression line, the distance between each observed value and the regression line fit was calculated and used to generate a statistical weighting of each data point. Values further off the line were assigned smaller weights via a standard weighting function, while those closest to the line received the highest weights. These weights (w_i) were subsequently used in computing each UTL.

To account for non-normal data, a range of possible mathematical transformations was applied to each background dataset, in order to identify the statistical model that maximized the robust correlation between pairs on the probability plot. The statistical weights described above were ultimately computed using the best-fitting statistical model.

3. The best-fitting statistical model for each COI was used to compute an upper tolerance limit (UTL) with 95% coverage and 95% confidence.

When a parametric model is appropriate, on the normalized scale, a UTL is computed using the standard normal theory equation:

$$UTL = \bar{x} + \kappa s$$

where \bar{x} and s represent the mean and standard deviation of the (transformed) observations, and κ is a tolerance limit multiplier. If the data have been transformed, the final UTL is derived by back-transforming the scaled UTL. The tolerance limit multiplier (or *tolerance factor*) is drawn from a standard table of such values.

To account for possible outliers and the statistical weighting described above, a different strategy was implemented to compute an estimate of the tolerance factor, $\hat{\kappa}$. Specifically, a large number of weighted *bootstrap* samples were drawn from the observed data (each bootstrap sample representing a random resampling of the original data, with each sample element being selected at random *with replacement*). For each bootstrap sample, a weighted mean and weighted standard deviation were computed to form the following ratio:

$$\left(\frac{x_i - \bar{x}_w}{s_w}\right)$$

where x_i is a random value drawn from the background data with probability of selection equal to its statistical weight w_i . Ultimately, an upper percentile of these ratios gave an estimate of the appropriate tolerance factor, $\hat{\kappa}$, and the bootstrap-t upper tolerance limit was computed as:

$$UTL = \bar{x}_w + \hat{\kappa}s_w$$

The UTLs computed under this methodology utilize all the data, including any possible extreme values, are reasonably robust (i.e., minimally impacted) in the presence of actual outliers, but are *quasi-parametric* — instead of nonparametric — despite the use of the bootstrap technique. This last characteristic implies that the t-bootstrap will result in an accurate UTL only when the bulk of the background data can be closely fit to a known statistical model. In cases where an adequate statistical model cannot be identified, a nonparametric UTL must be computed instead.

The probability plot correlations mentioned earlier were utilized in testing this method on a large series of datasets to derive an empirical cutoff value of 0.94 for deciding when the t-bootstrap could be applied. Correlations of 0.94 and above led to use of the t-bootstrap, while correlations below this cutoff led to calculation of a nonparametric UTL. Note that for nonparametric models, the UTL is selected as one of the largest of the sample values, often the maximum.

For the Clear Spring Ranch Ash Landfill CCR unit, **Table 8** lists the calculated GWPS limits established for this monitoring network.

3.2 Computing Trend Lines and Confidence Interval Bands

USEPA's Unified Guidance recommends comparing some type of confidence interval (CI) against a groundwater protection standard (GWPS) in order to assess whether or not the limit has been exceeded with statistical significance. If the entire interval exceeds the GWPS, a statistically significant increase (SSI) is identified. If none of the interval, or only part, exceeds the GWPS, no SSI is recorded.

Since groundwater data are collected over time, and not all at once, some or most of the variation in the measurements may be due to a trend. To better account for this possibility, USEPA also

COI	Model	Ν	Coverage	Confidence	\mathbf{UTL}	RegLimit	GWPS
Antimony	TBOOT-Eighth Root	95	0.95	0.95	1.36	6	6
Arsenic	TBOOT-Fourth Root	95	0.95	0.95	12	10	12
Barium	TBOOT-Log	95	0.95	0.95	36.8	2000	2000
Beryllium	NP	45	0.95	0.901	0.2	4	4
Cadmium	TBOOT-Normal	50	0.95	0.95	0.921	5	5
Chromium	TBOOT-Normal	50	0.95	0.95	6.35	100	100
Cobalt	TBOOT-Normal	40	0.95	0.95	6.05	6	6.05
Fluoride	NP	95	0.95	0.954	0.75	4	4
Lead	TBOOT-Normal	40	0.95	0.95	2.01	15	15
Lithium	NP	95	0.95	0.954	1160	40	1160
Mercury	NP	94	0.95	0.952	0.009	2	2
Molybdenum	TBOOT-Log	50	0.95	0.95	10.6	100	100
Rad226+228	TBOOT-Fifth Root	95	0.95	0.95	4.75	5	5
Selenium	NP	95	0.95	0.954	216	50	216
Thallium	TBOOT-Square Root	50	0.95	0.95	1.79	2	2

Table 8: 2022 Clear Spring Ranch Ash Landfill CCR Unit GWPS Limits

recommends a variation on the confidence interval method known as a confidence interval band around a trend line. In this case, a (linear) trend line is first fit to the data, then a confidence band is constructed around the trend line. The confidence interval band can be compared against a GWPS in much the same fashion as a confidence interval, only now a comparison can be made at different points in time by comparing the 'cross-section' of the band for a given sampling date. If the interval represented by the confidence band cross-section fully exceeds the GWPS, an SSI is identified for that sampling event.

At the CSU CCR site, CI bands were constructed for each well-constituent pair using all available non-outlier sample data. Cross-sections of each band were then compared to the GWPS for the most recent Assessment Monitoring event for the purpose of identifying any SSIs.

3.2.1 Trend Lines Using Linear Regression

Unless there are extreme outliers and/or curvature in the data, linear regression provides a standard and well-tested method for estimating the linear portion of a trend. The slope of the regression line points to the magnitude and direction of the trend. There is also a standard method for computing a confidence band around a linear regression trend line. For instance, equations [21.24] and [21.25] of Section 21.3 in the *Unified Guidance* can be compactly written as

$$CB_{1-\alpha} = \hat{x}_0 \pm \sqrt{2s_e^2 F_{1-\alpha,n-2} \left[\frac{1}{n} + \frac{(t_0 - \bar{t})^2}{(n-1)s_t^2}\right]}$$

where CB = confidence band, \hat{x}_0 is the regression line estimate at time t_0 , s_e^2 is the mean squared error of the regression line, F is a quantile from the F-distribution with 2 and n-2 degrees of freedom, and \bar{t} and s_t^2 represent the mean and standard deviation of the sampling dates.

For well-constituent pairs with no non-detects, linear regression and the formula above were used to construct each confidence band with 98% overall confidence, corresponding to a lower confidence limit with 99% confidence.

3.3 Comparing Confidence Interval Bands Against GWPS

To assess whether any SSIs have occurred during the 2022 Assessment Monitoring at the CSU CCR site, the confidence interval (CI) bands described in **Section 2.2** were compared against the constituent-specific groundwater protection standards (GWPS) described in **Section 2.1**. Of note, an SSI was identified if and only if the CI band fully exceeded the GWPS at the most recent sampling event.

Plots of the CI band comparisons for each well-constituent pair are presented in Appendix B.

3.4 Summary of Appendix IV Statistical Analysis

To facilitate an 'at-a-glance' summary of the statistical comparison results, **Table 9** is a 'traffic light' matrix, showing a compact representation of each well location matched against each constituent in Appendix IV. This summary is useful in planning for mitigation actions. Green cells indicate that no SSI was observed. Red cells indicate the opposite: an SSI was flagged at the most recent sampling event. Yellow cells are warnings which indicate that a well-constituent pair should be closely watched. These cases have increasing trends and a CI band whose lower limit is at least 65% of the GWPS. Often, in yellow cells, the CI band cross-section straddles the GWPS.

At the Clear Spring Ranch Ash Landfill CCR unit, a total of 0 SSI(s) were identified during the 2022 annual Assessment Monitoring analysis.

	Well Locations							
COC	SC-10	SC-11	SC-12	SC-13	SC-14			
Antimony	GRN	GRN	GRN	GRN	GRN			
Arsenic	\mathbf{GRN}	\mathbf{GRN}	\mathbf{GRN}	\mathbf{GRN}	GRN			
Barium	\mathbf{GRN}	\mathbf{GRN}	\mathbf{GRN}	\mathbf{GRN}	\mathbf{GRN}			
Beryllium	\mathbf{GRN}	GRN	GRN	\mathbf{GRN}	GRN			
Cadmium	\mathbf{GRN}	\mathbf{GRN}	\mathbf{GRN}	GRN	\mathbf{GRN}			
Chromium	GRN	GRN	GRN	GRN	GRN			
Cobalt	GRN	GRN	GRN	GRN	GRN			
Fluoride	GRN	GRN	GRN	GRN	GRN			
Lead	GRN	GRN	GRN	GRN	GRN			
Lithium	\mathbf{GRN}	\mathbf{GRN}	\mathbf{GRN}	GRN	\mathbf{GRN}			
Mercury	GRN	GRN	GRN	GRN	GRN			
Molybdenum	GRN	GRN	GRN	GRN	\mathbf{GRN}			
$\operatorname{Rad}226+228$	GRN	GRN	GRN	GRN	\mathbf{GRN}			
Selenium	YLW	YLW	GRN	GRN	GRN			
Thallium	\mathbf{GRN}	\mathbf{GRN}	\mathbf{GRN}	\mathbf{GRN}	\mathbf{GRN}			

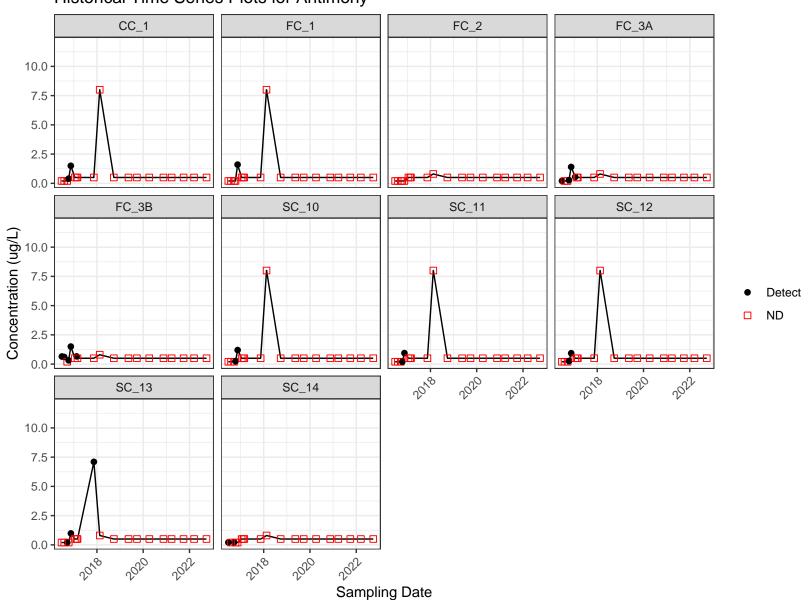
Table 9: Traffic Light Matrix for Clear Spring Ranch Ash Landfill CCR Unit

Color-Coding Key:

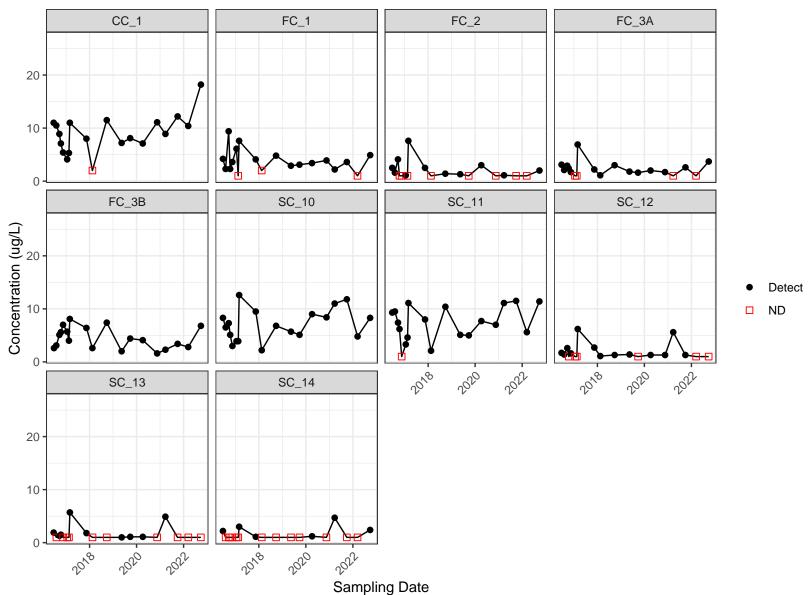
RED = CI Band above GWPS;

GRN = CI Band below GWPS;

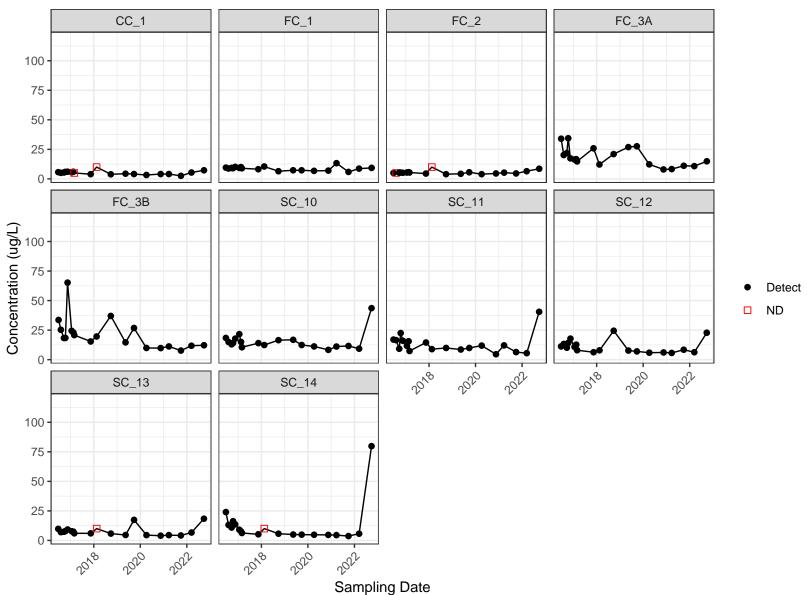
 $\rm YLW = Non-Decr Trend, CI Lower Bound at least 65\% of GWPS$

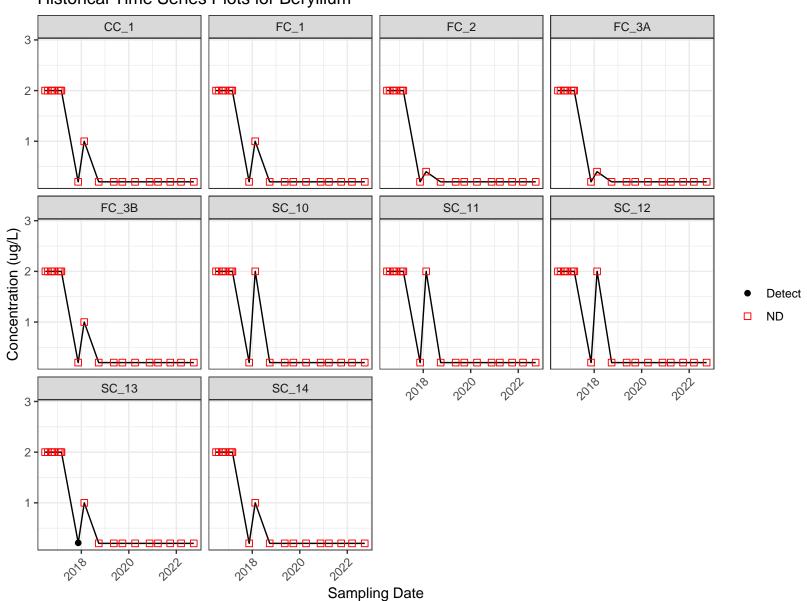

4 References

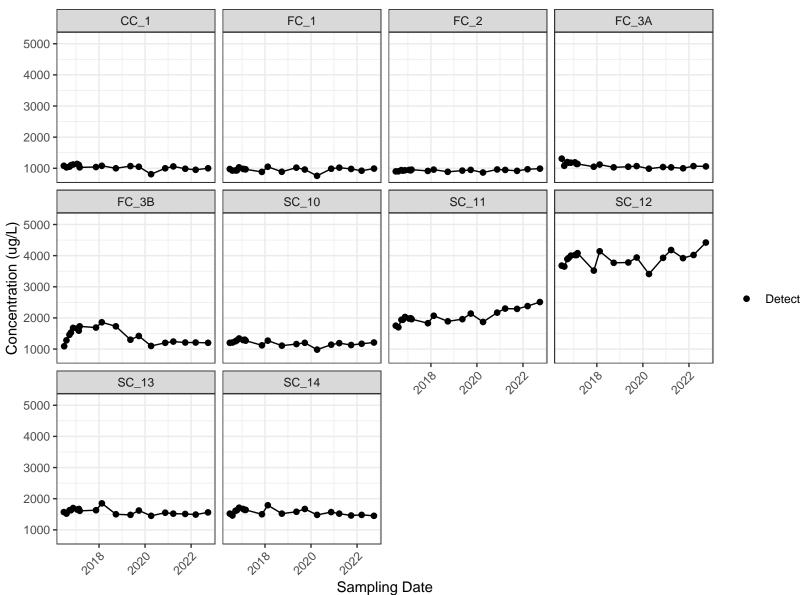
USEPA. 2009. "Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities: Unified Guidance." USEPA: Office of Resource Conservation & Recovery, EPA 530-R-09-007.

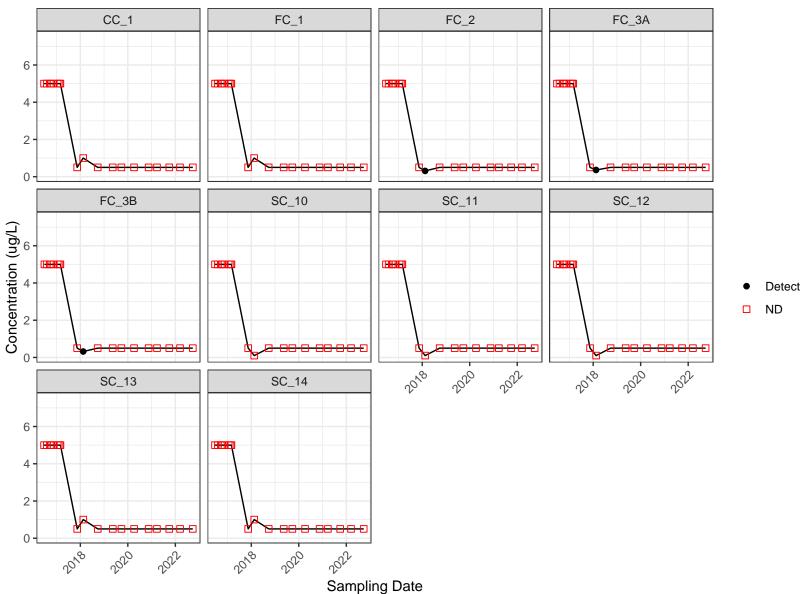

Appendix A: Exploratory Plots

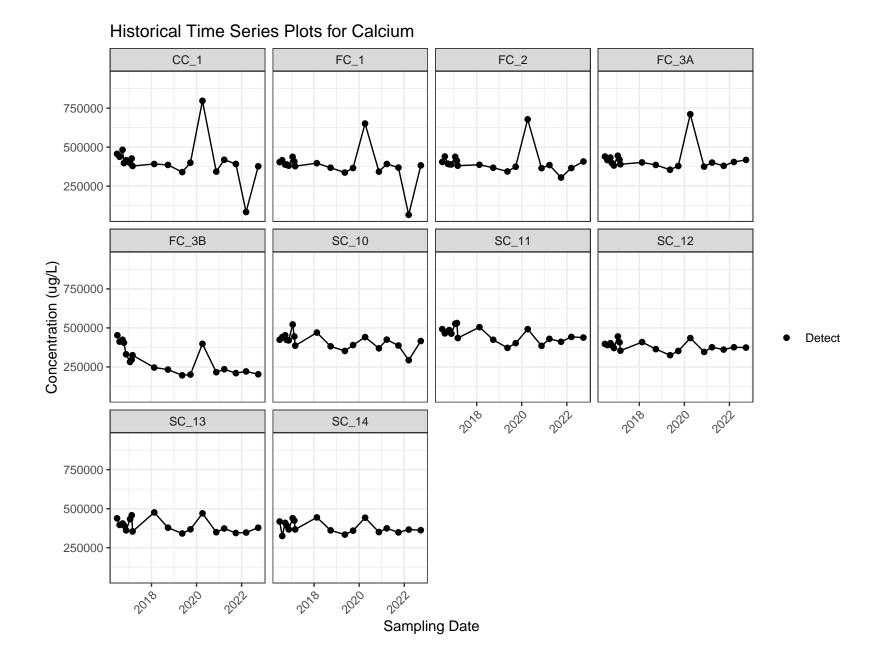
- 1. Time Series Plots of Each Parameter
- 2. Box Plots of Each Parameter

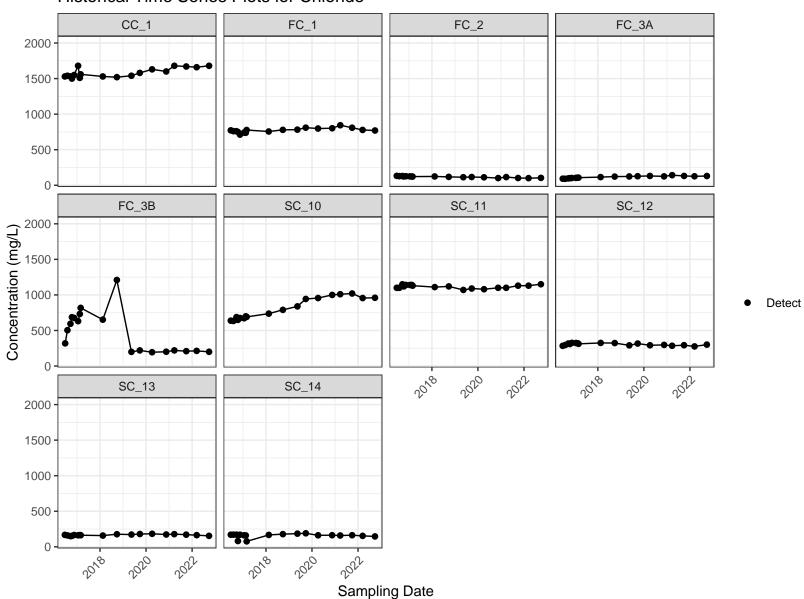

Time Series Plots


Historical Time Series Plots for Antimony

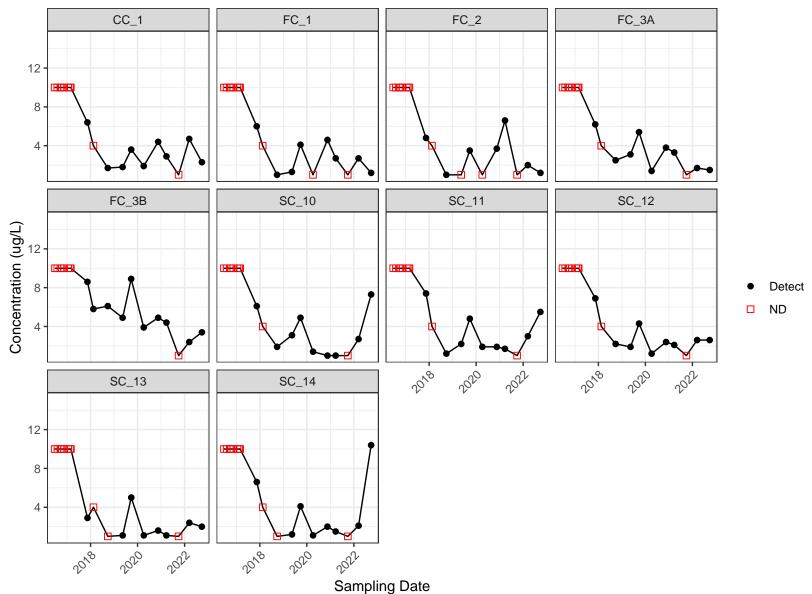

Historical Time Series Plots for Arsenic


Historical Time Series Plots for Barium

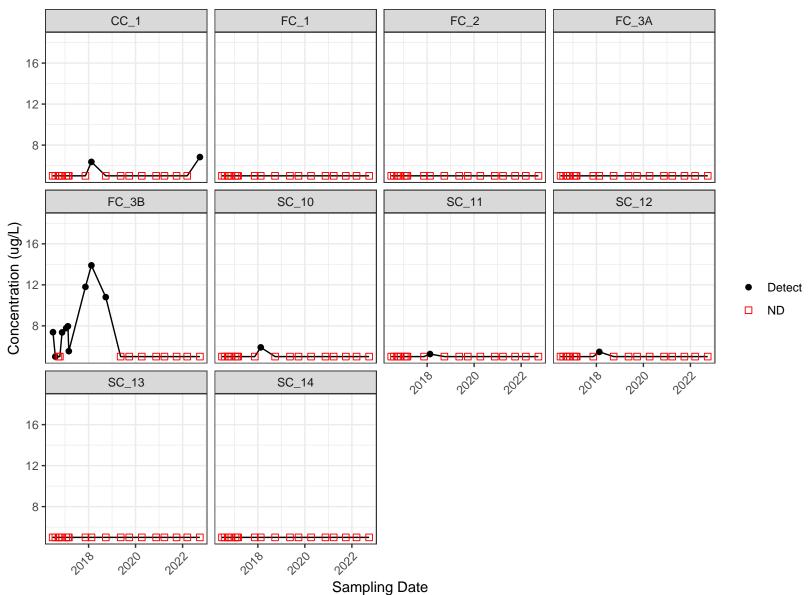

Historical Time Series Plots for Beryllium

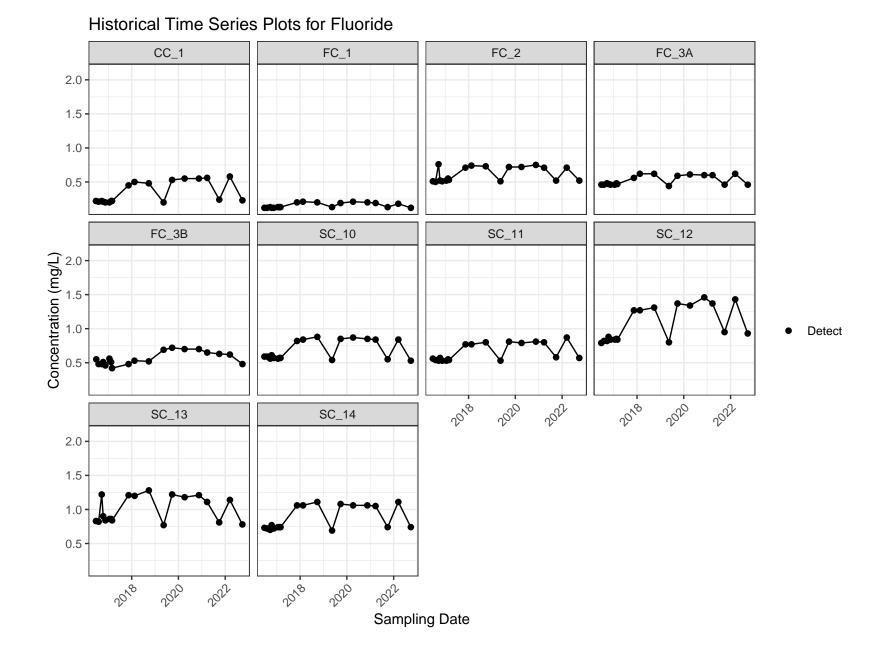


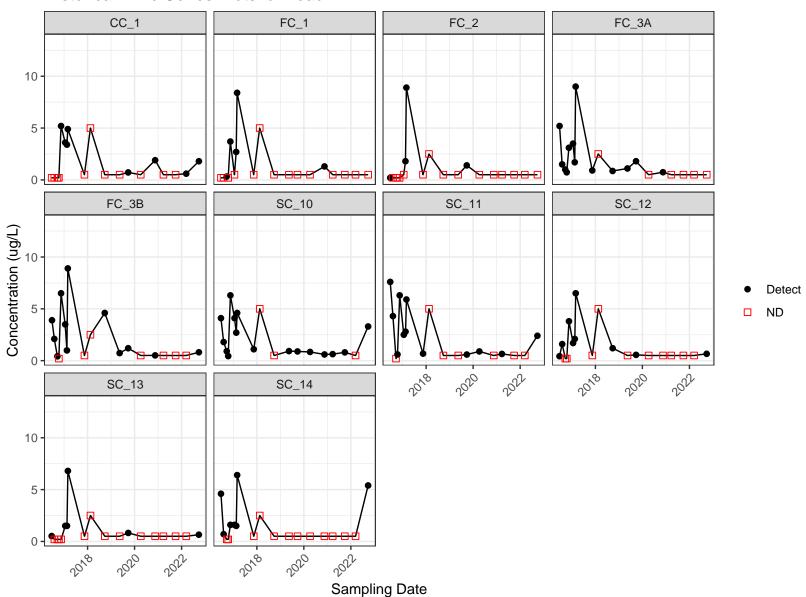
Historical Time Series Plots for Boron



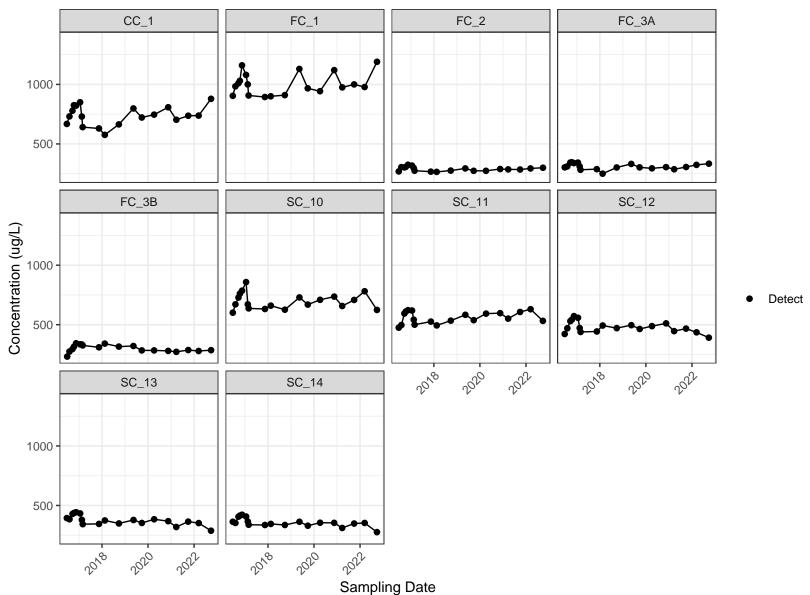
Historical Time Series Plots for Cadmium



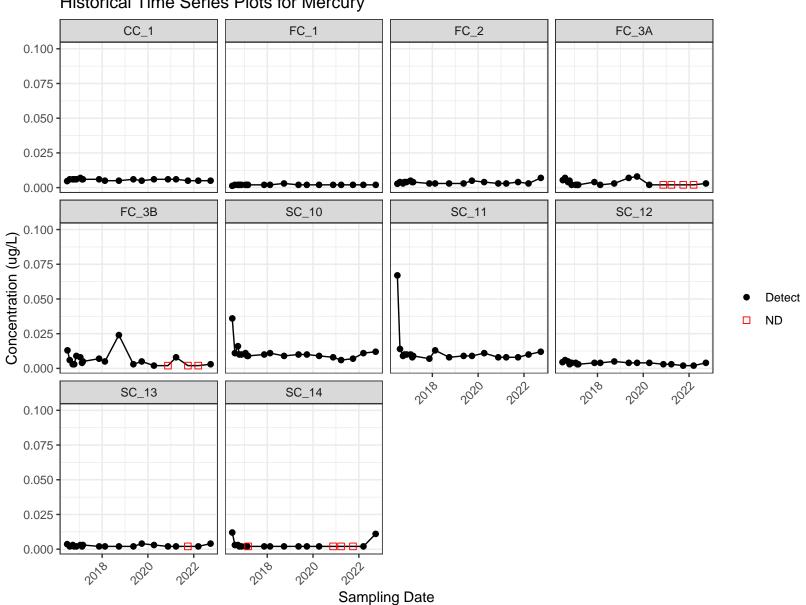

Historical Time Series Plots for Chloride

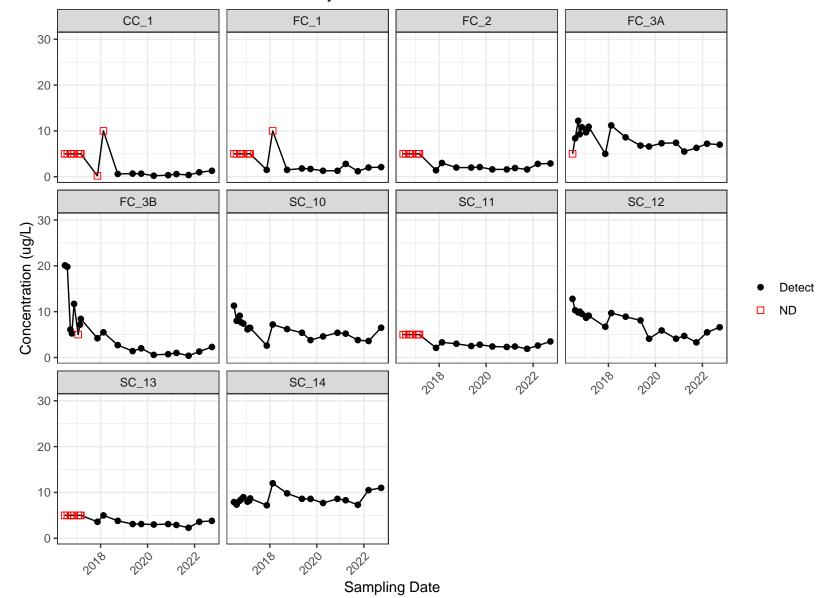


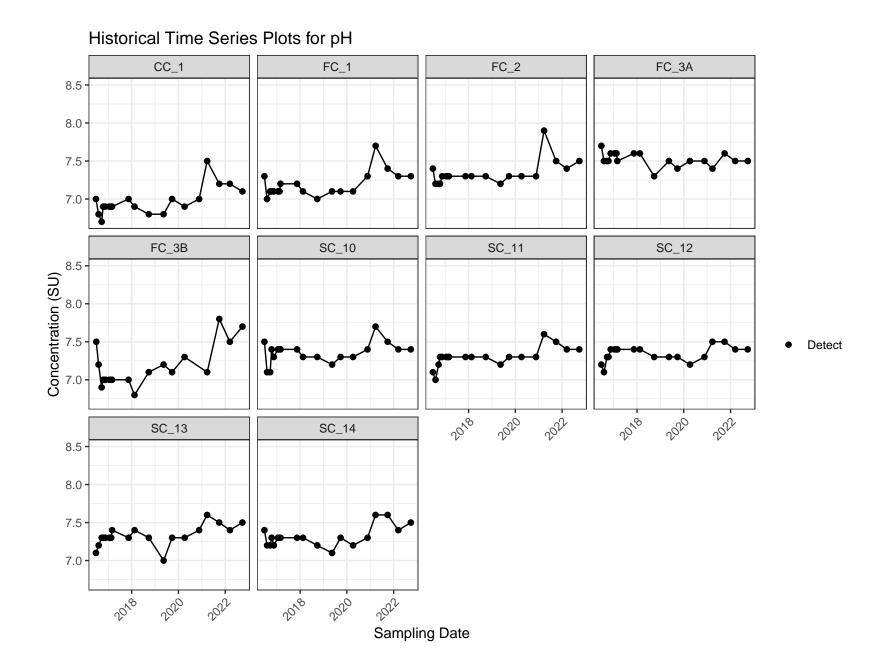
Historical Time Series Plots for Chromium

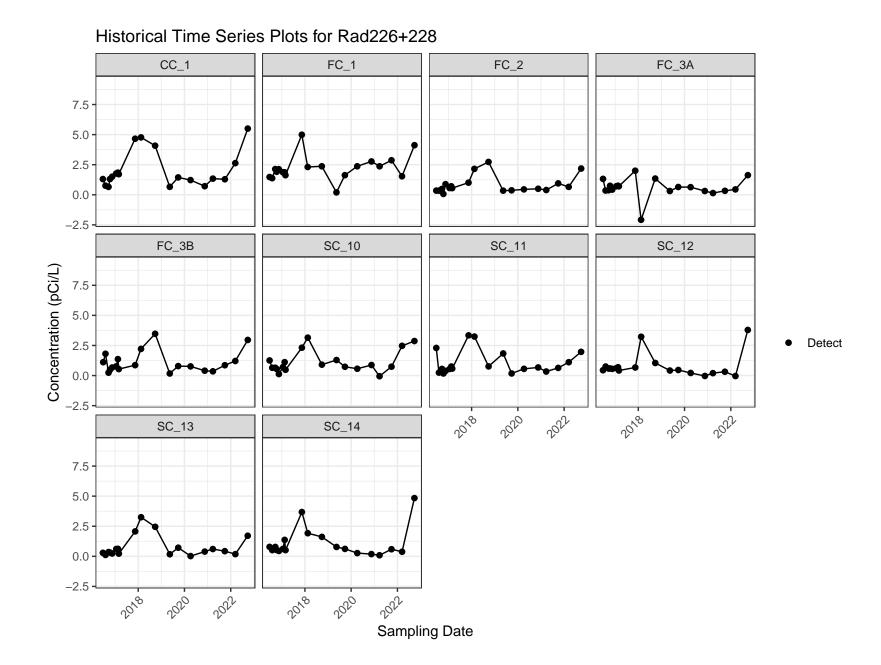


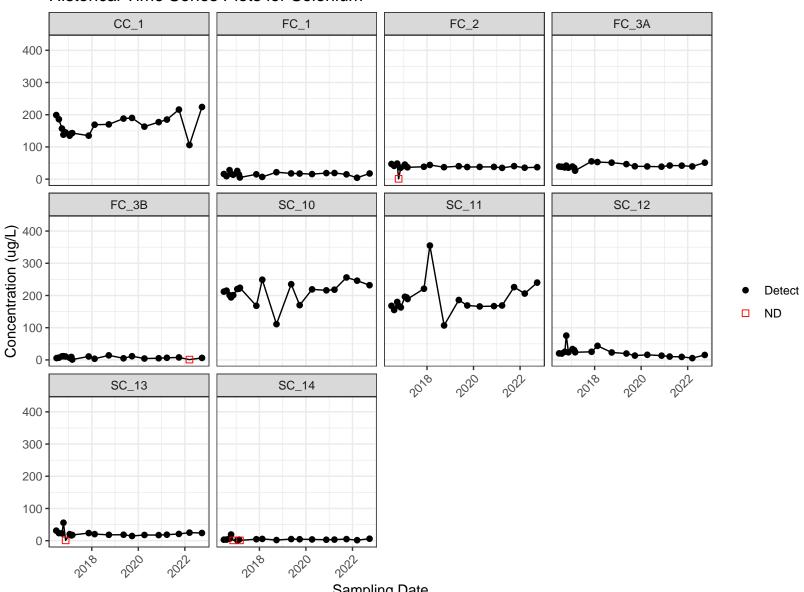
Historical Time Series Plots for Cobalt



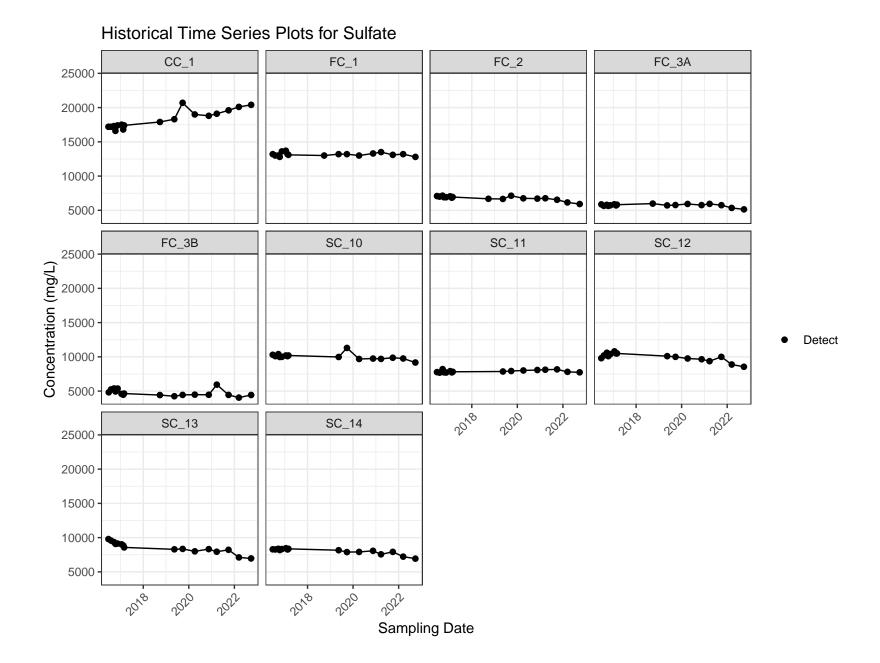

Historical Time Series Plots for Lead

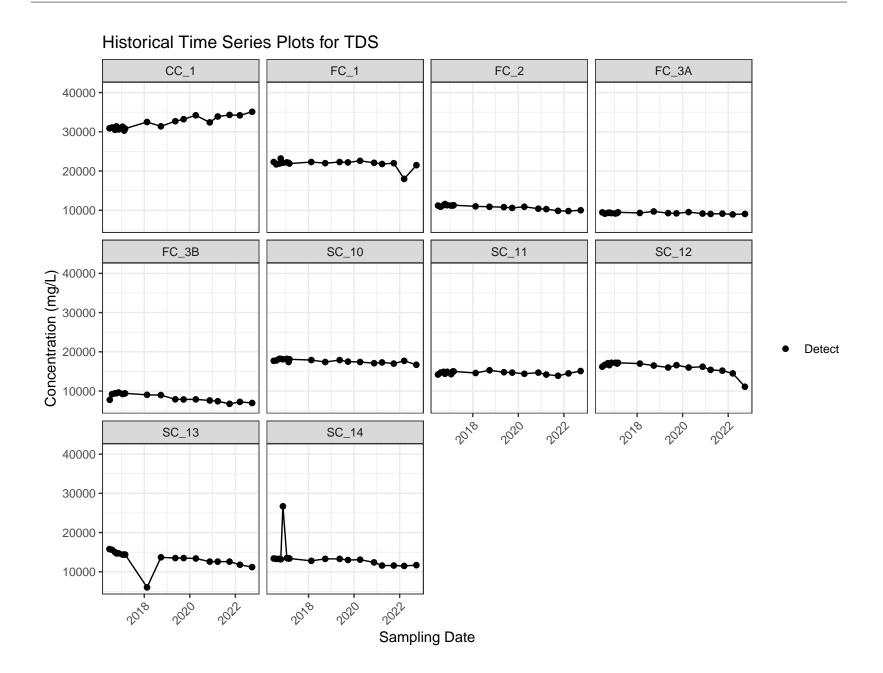

Historical Time Series Plots for Lithium

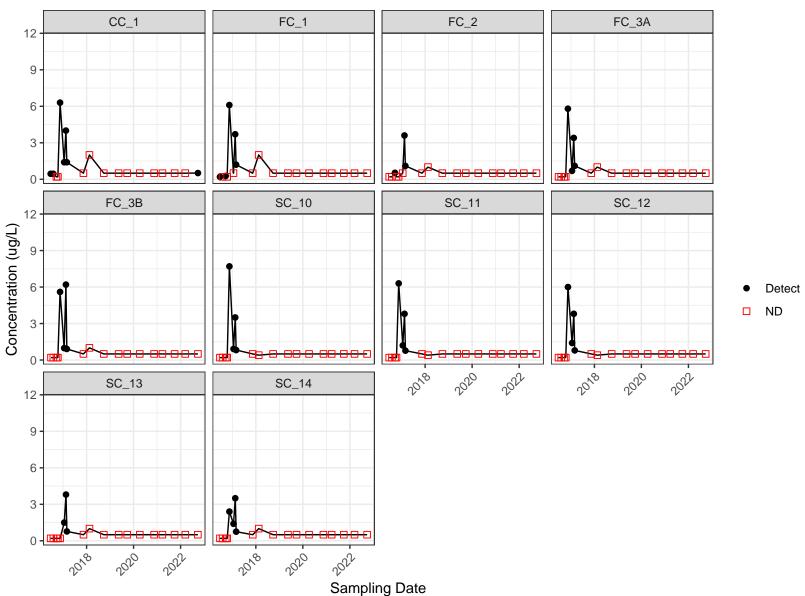



Historical Time Series Plots for Mercury

Historical Time Series Plots for Molybdenum

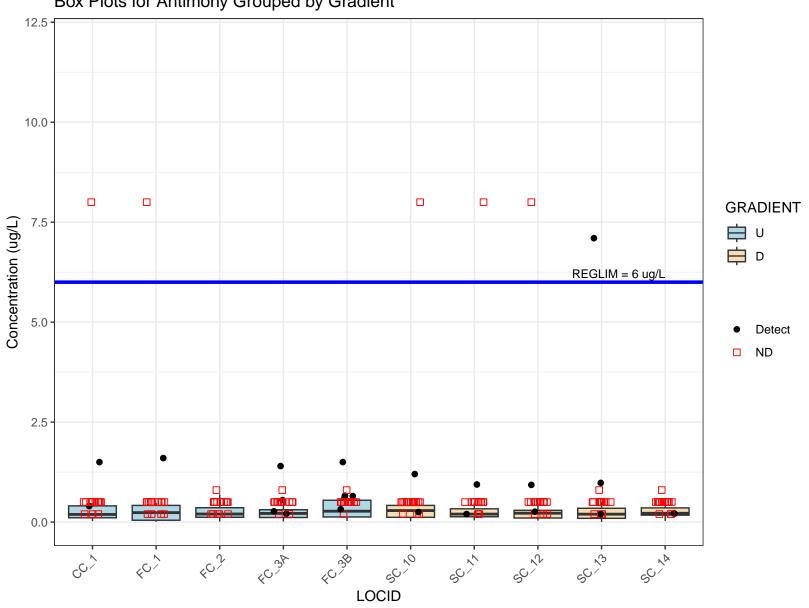


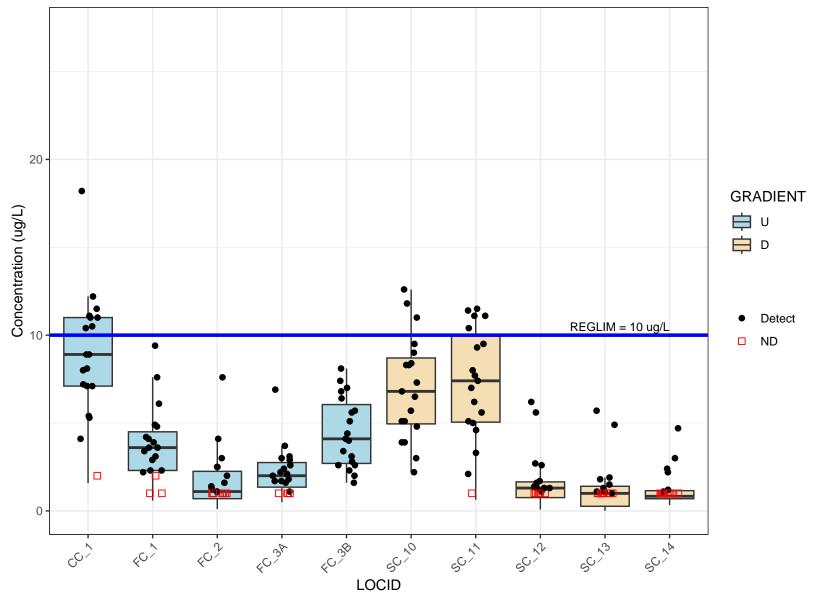


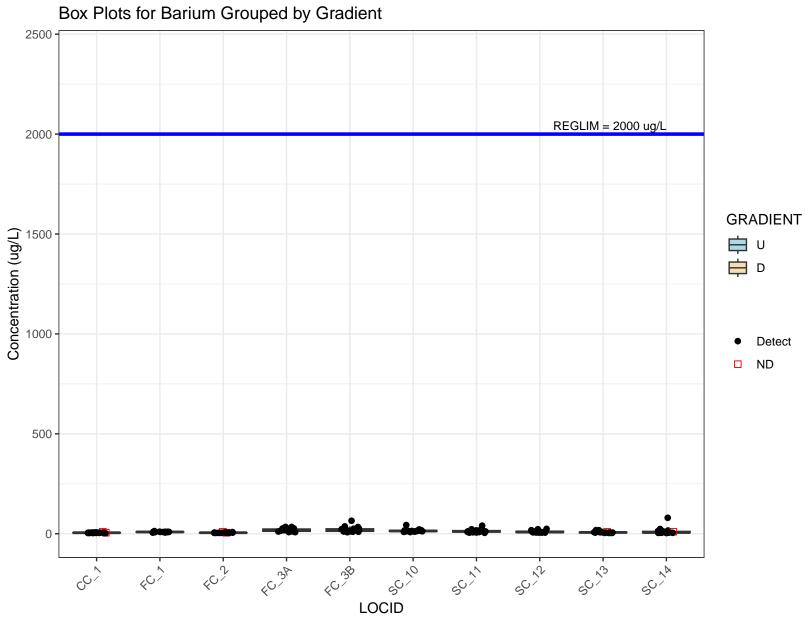


Historical Time Series Plots for Selenium

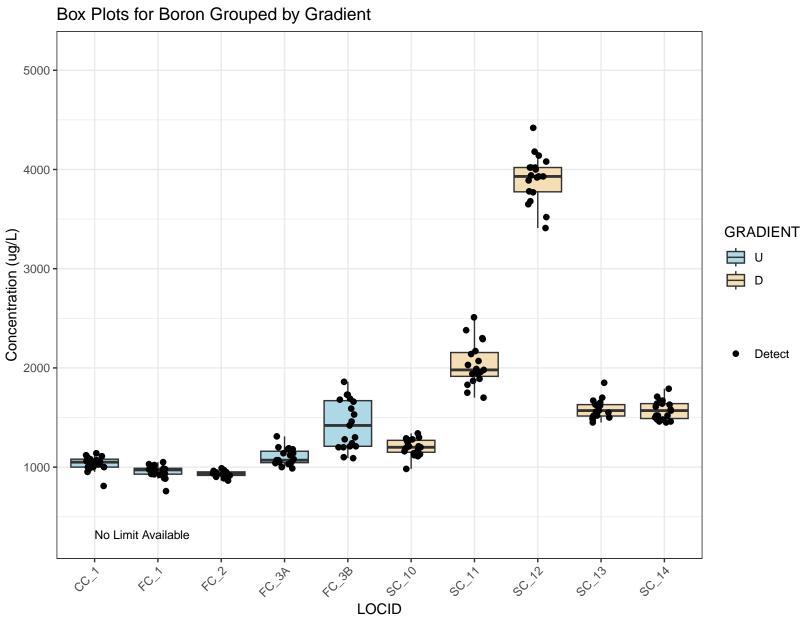
Sampling Date

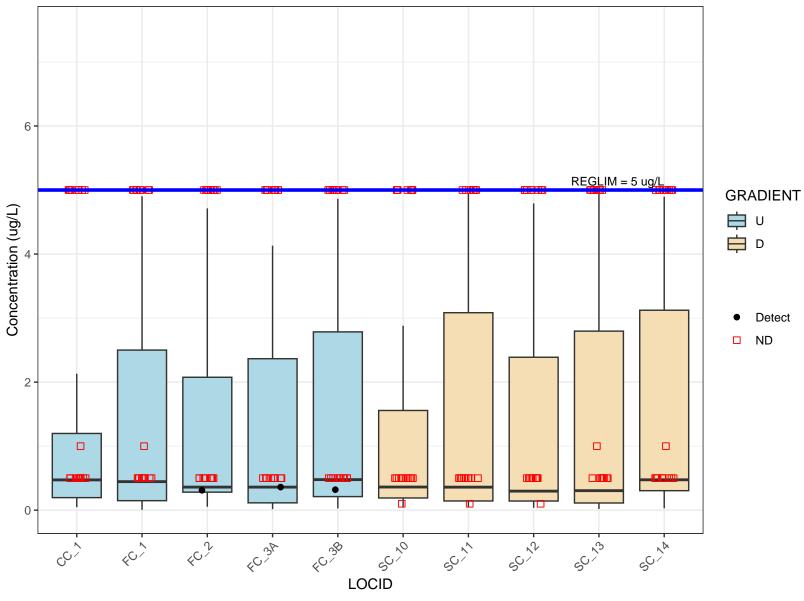



Historical Time Series Plots for Thallium


Box Plots

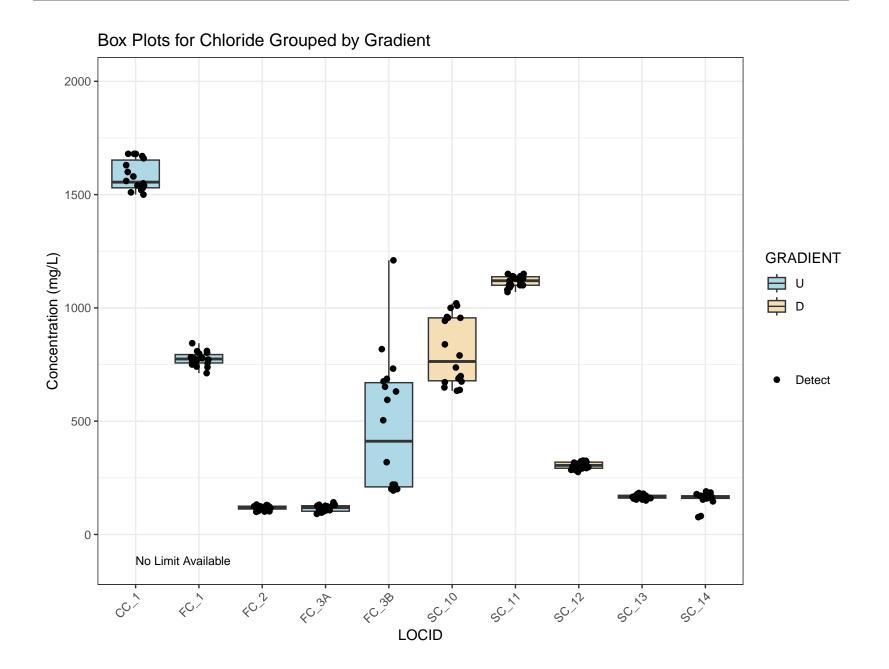
Box Plots for Antimony Grouped by Gradient

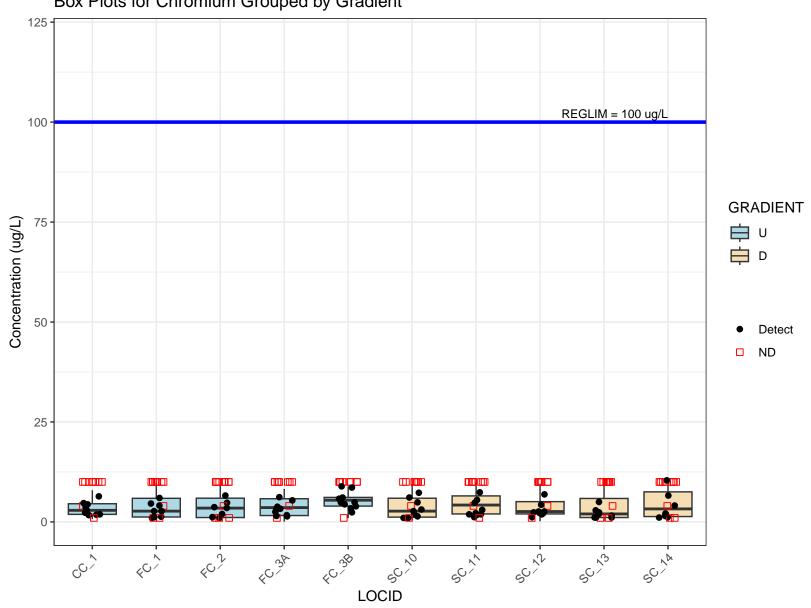

Box Plots for Arsenic Grouped by Gradient



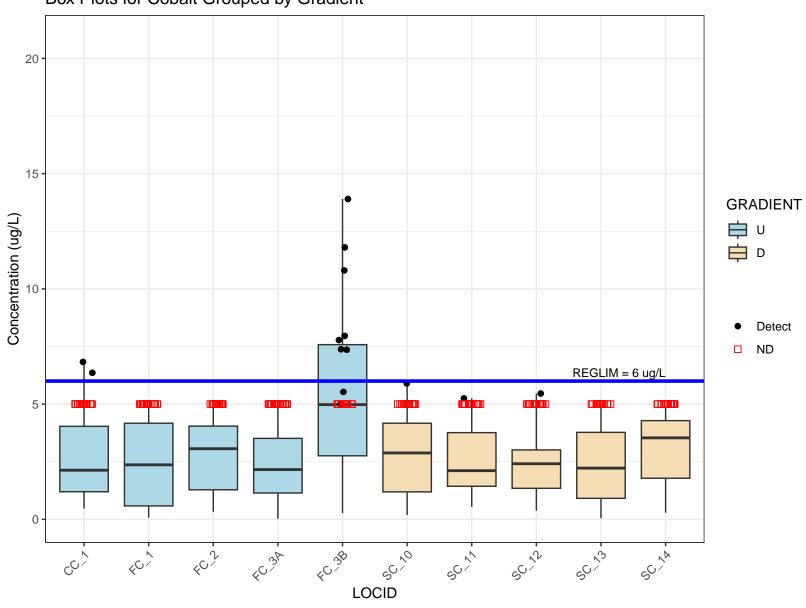
6 REGLIM = 4 ug/L 4 GRADIENT Concentration (ug/L) U D Detect • ND 2 -**THE** (COM) шD and the 0. 40³⁶ 40 × +^{℃∕} 50 50 50 S SC /A ~~`` c^{2}

Box Plots for Beryllium Grouped by Gradient



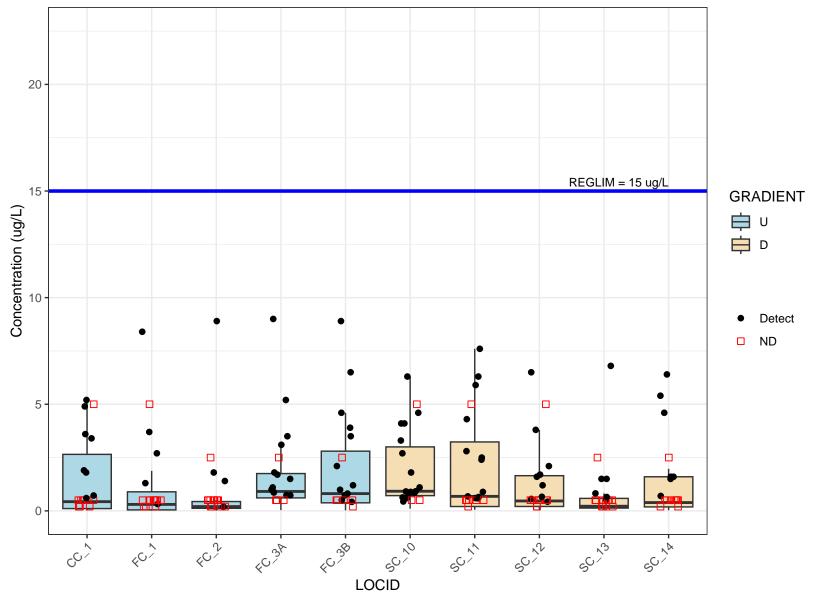


Box Plots for Cadmium Grouped by Gradient

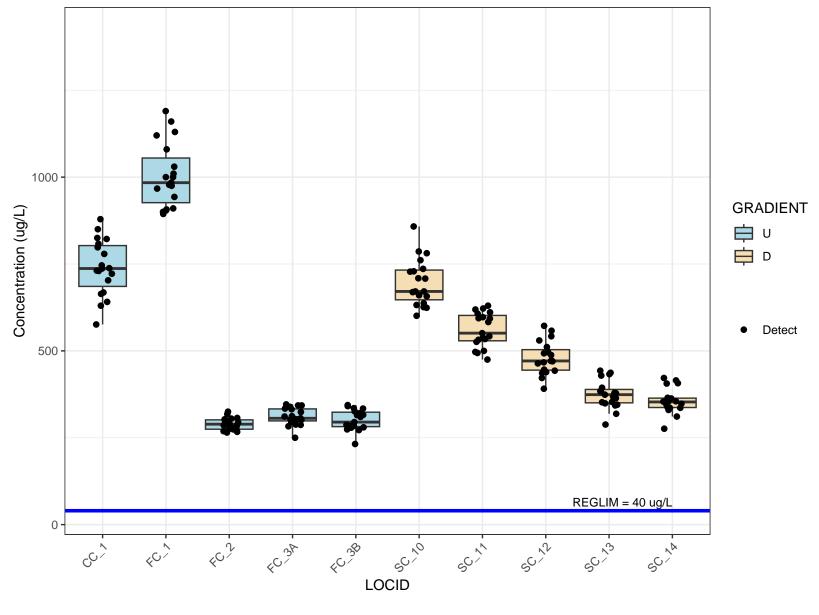

750000 GRADIENT Concentration (ug/L) μ υ D 500000 ľ Detect • • • -250000 -0. No Limit Available 40² +C 3A + *^C т ¹ S^C SC/A <u>ر</u>ې ~~``

Box Plots for Calcium Grouped by Gradient

Box Plots for Chromium Grouped by Gradient

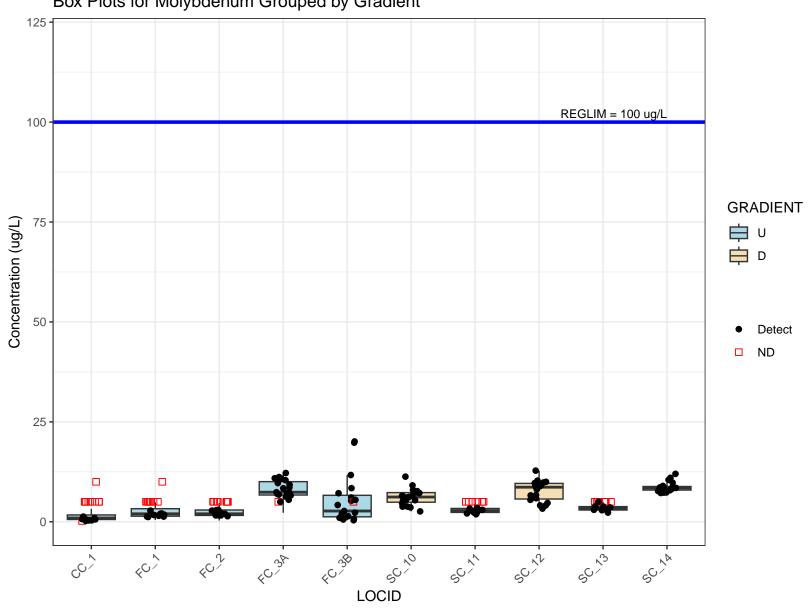


Box Plots for Cobalt Grouped by Gradient

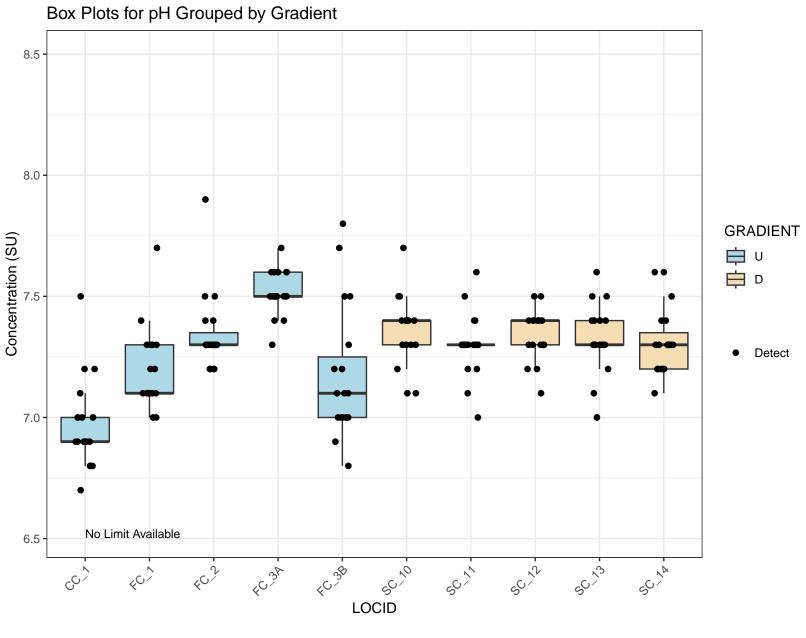

6. REGLIM = 4 mg/L 4 GRADIENT Concentration (mg/L) ψU ᄇ D • Detect 2 -3. 0 + + + ^{در} ⁄ r S 40² SUN SUN ~~`` SC 1A . سی

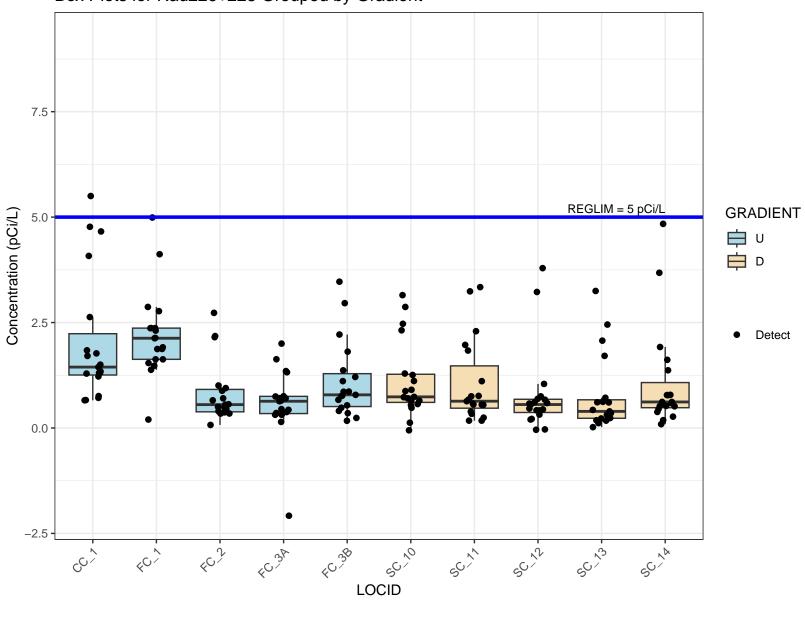
Box Plots for Fluoride Grouped by Gradient

Box Plots for Lead Grouped by Gradient

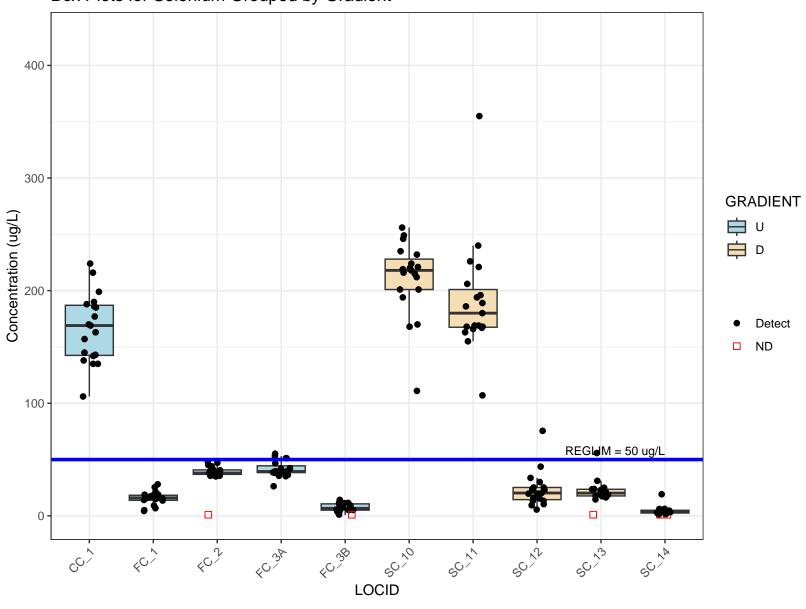


Box Plots for Lithium Grouped by Gradient

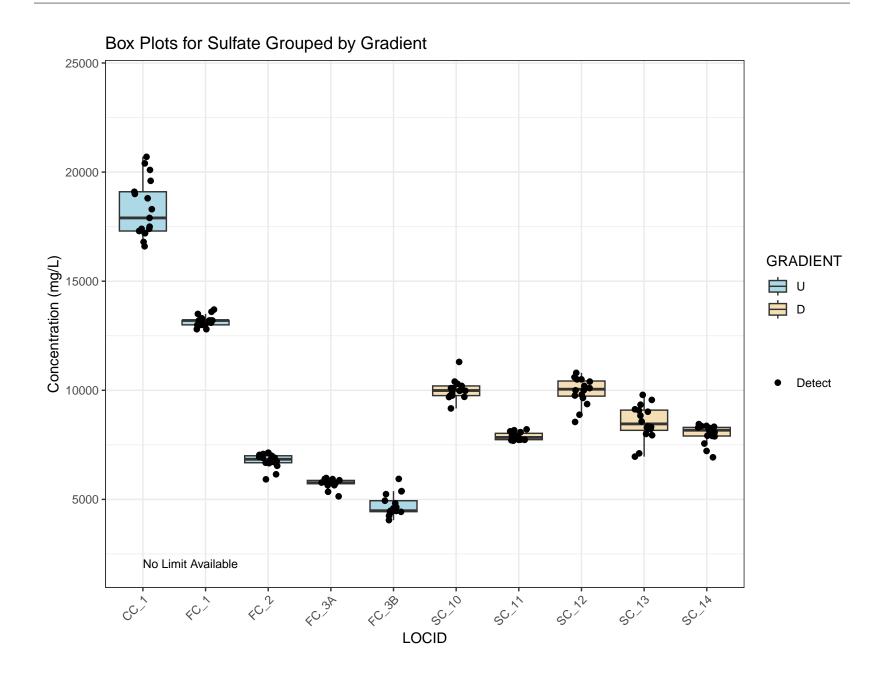


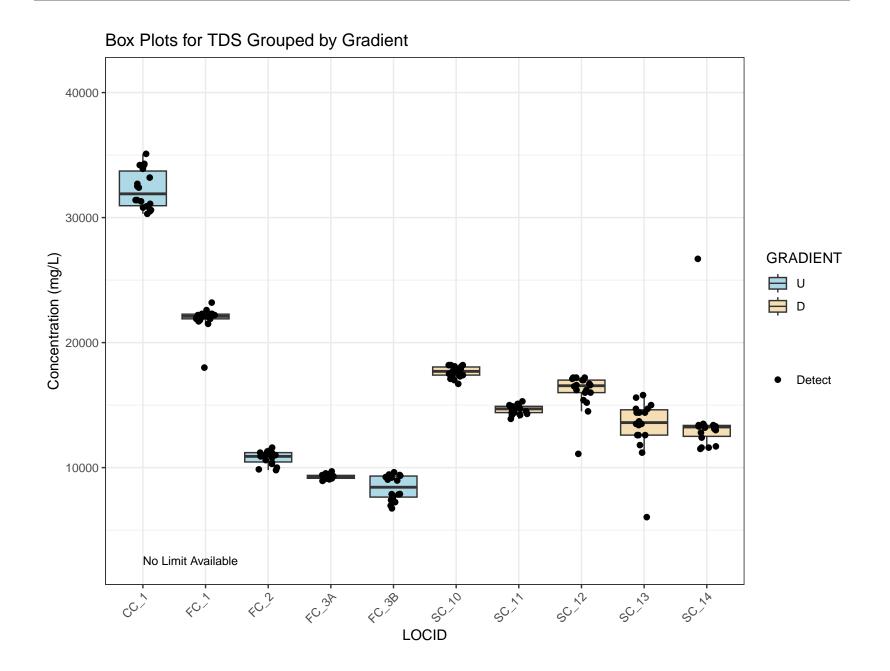

3 REGLIM = 2 ug/L 2 GRADIENT Concentration (ug/L) U D Detect • D ND 1 0 40² 40² 40³⁶ 4^{0/} $\mathcal{S}^{(1)}$

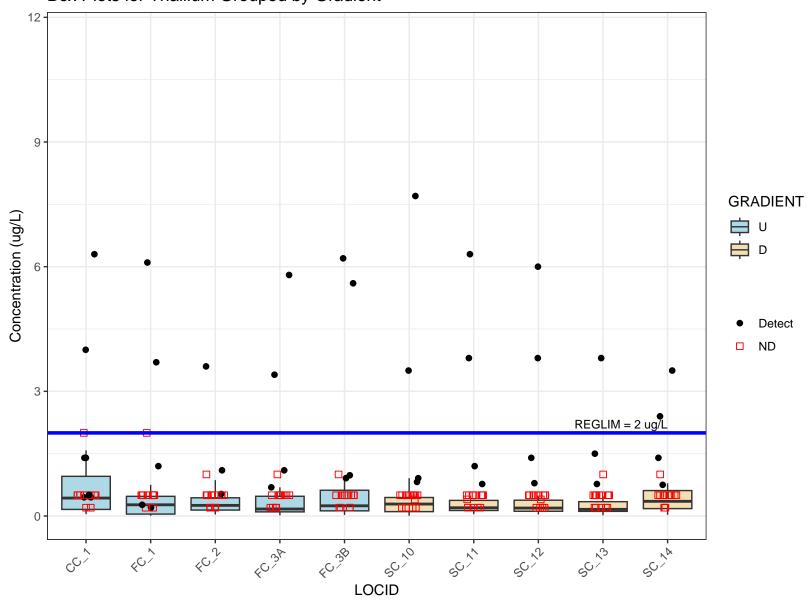
Box Plots for Mercury Grouped by Gradient



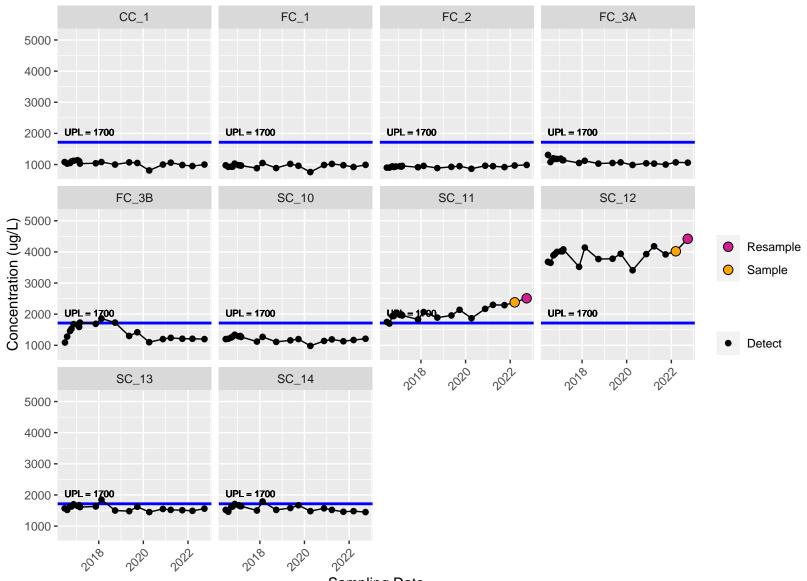
Box Plots for Molybdenum Grouped by Gradient



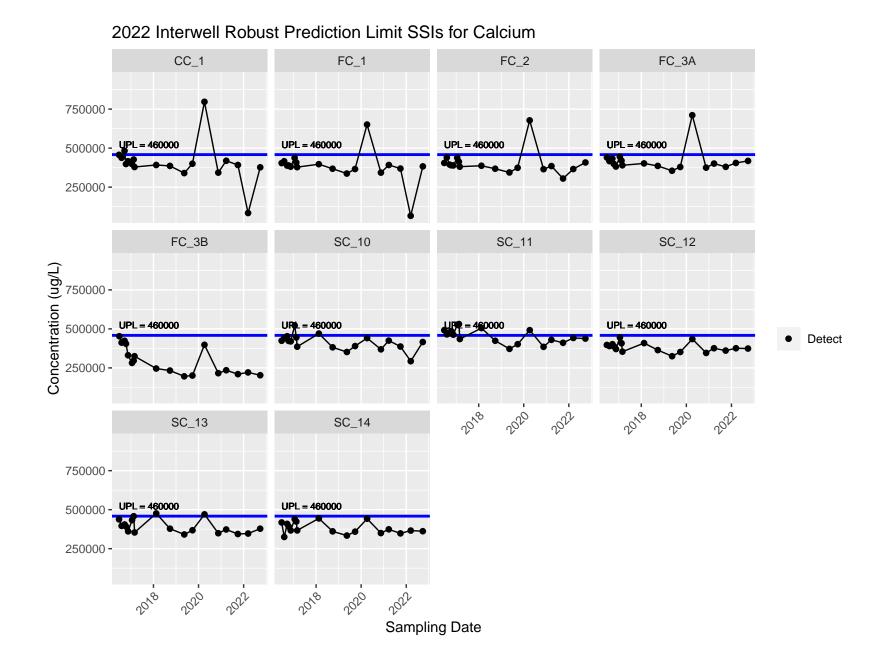


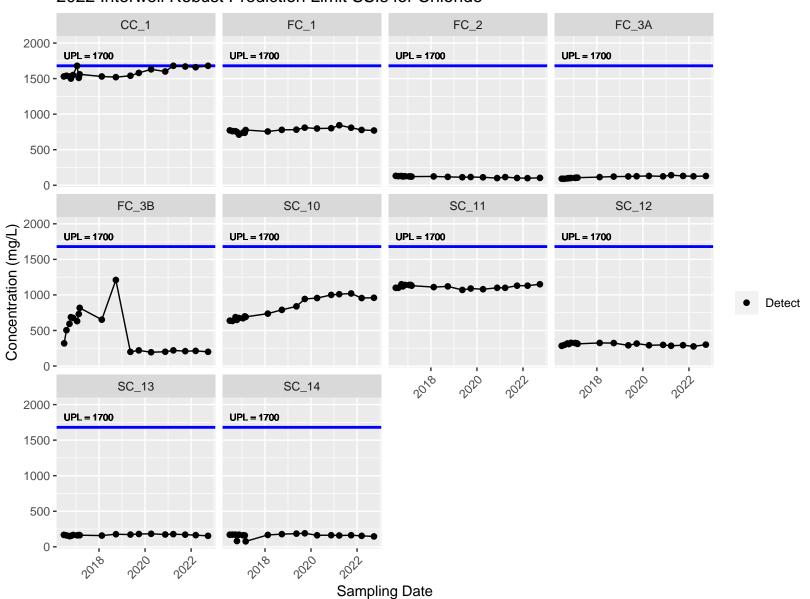

Box Plots for Rad226+228 Grouped by Gradient

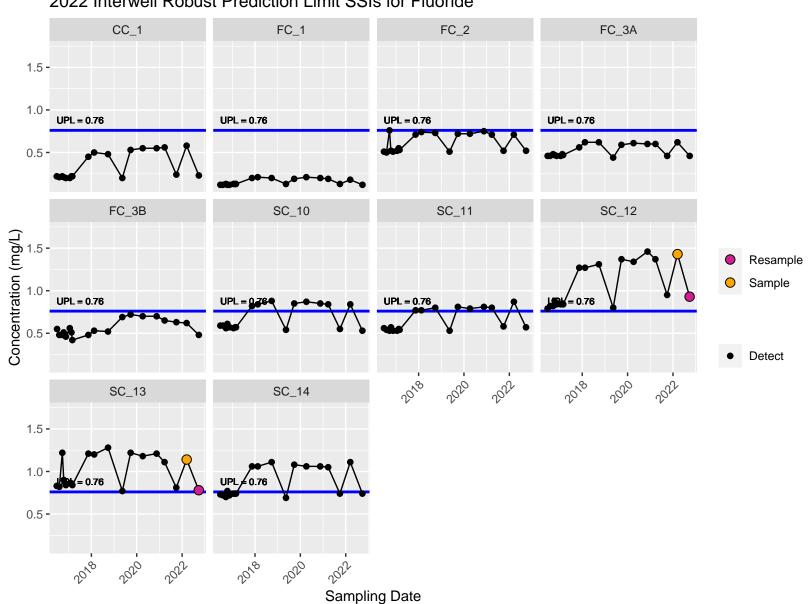
Box Plots for Selenium Grouped by Gradient



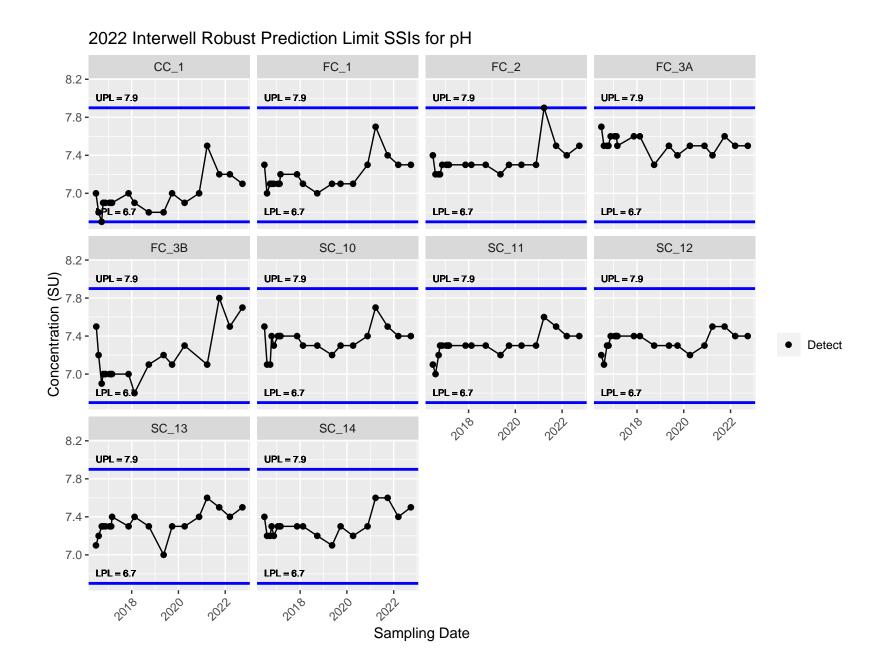
Box Plots for Thallium Grouped by Gradient

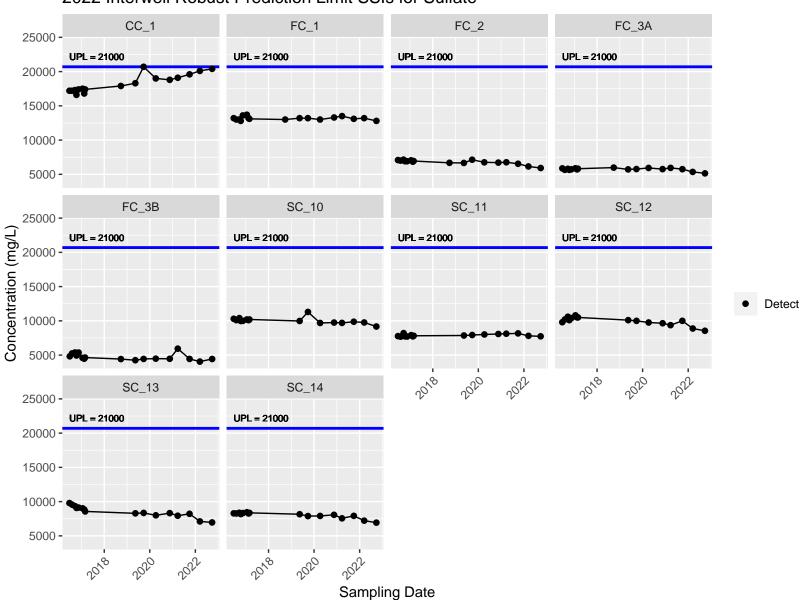

Appendix B: Supporting Graphics


- 1. Appendix III Prediction Limit Outcome Plots
- 2. Confidence Interval Band Plots for Appendix IV Parameters

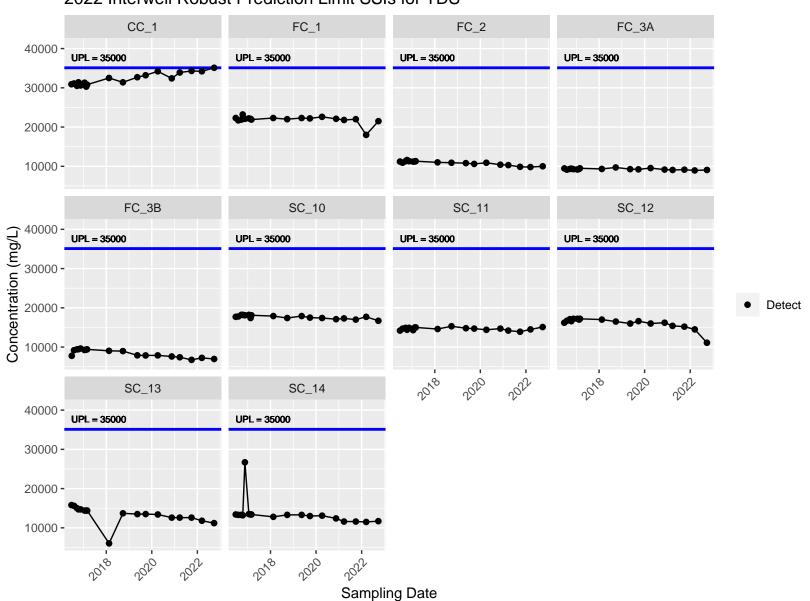


2022 Interwell Robust Prediction Limit SSIs for Boron

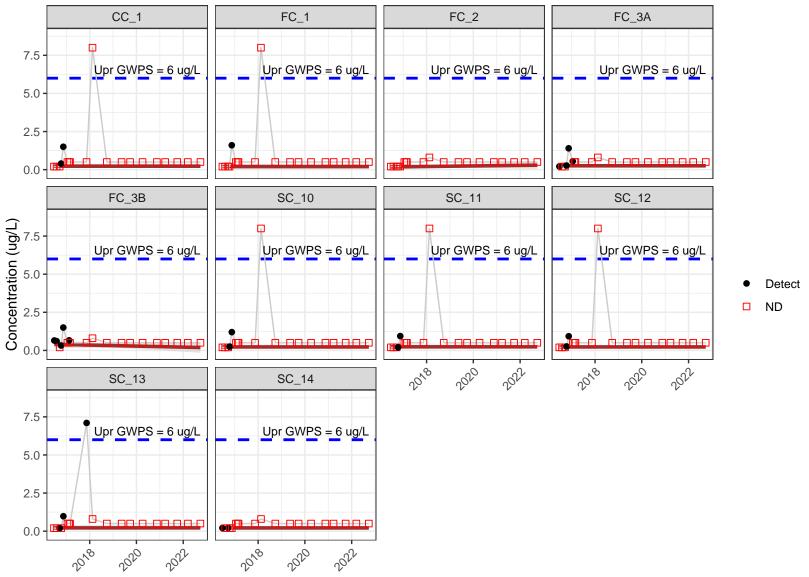




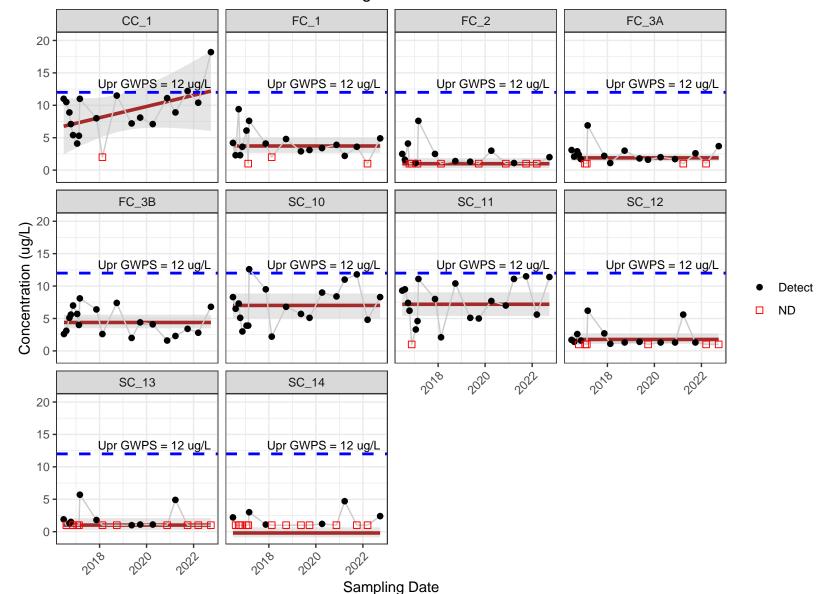
2022 Interwell Robust Prediction Limit SSIs for Chloride



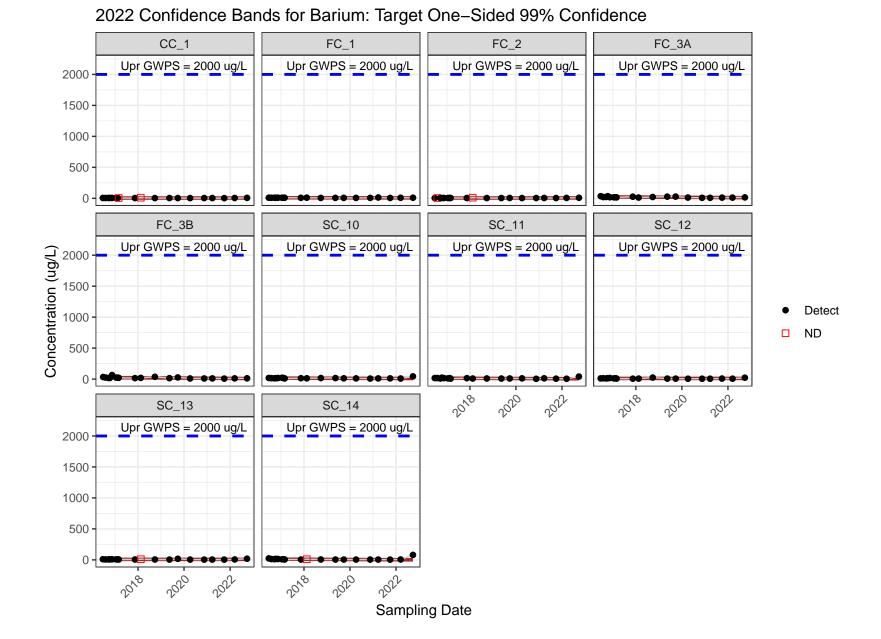
2022 Interwell Robust Prediction Limit SSIs for Fluoride

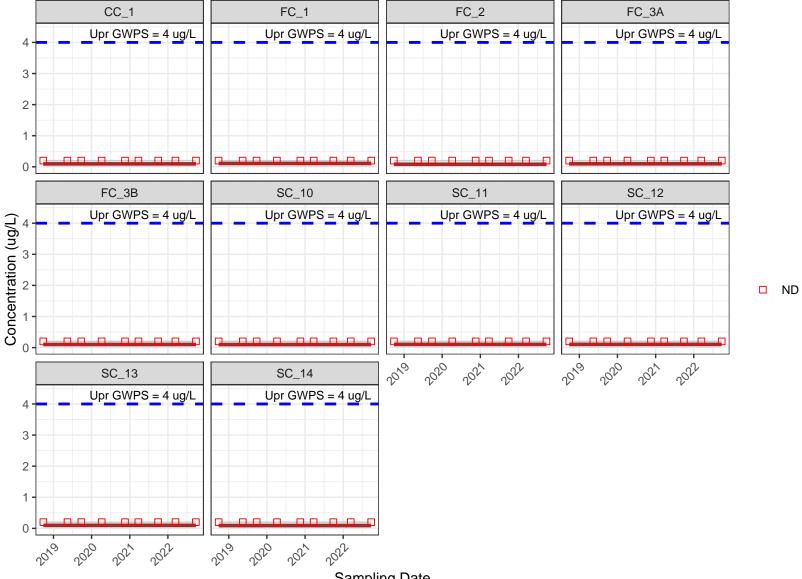


2022 Interwell Robust Prediction Limit SSIs for Sulfate

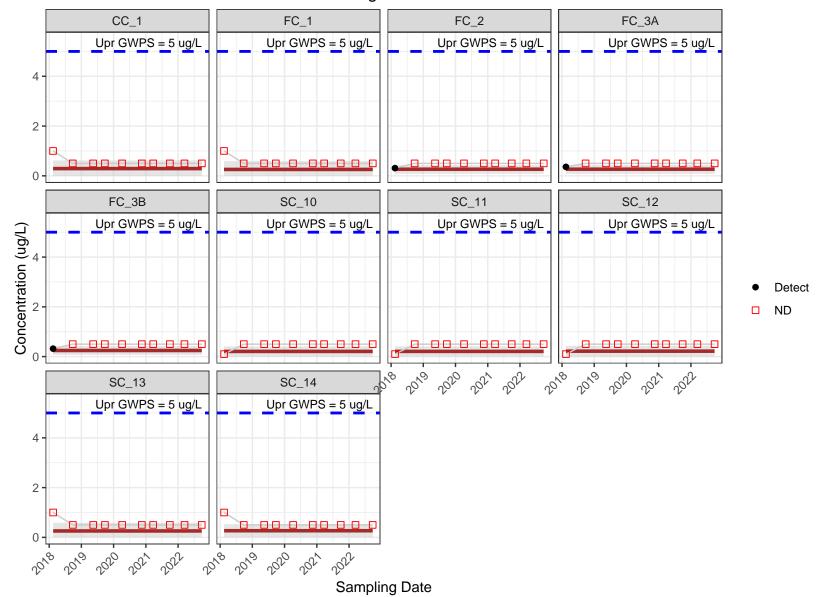


2022 Interwell Robust Prediction Limit SSIs for TDS

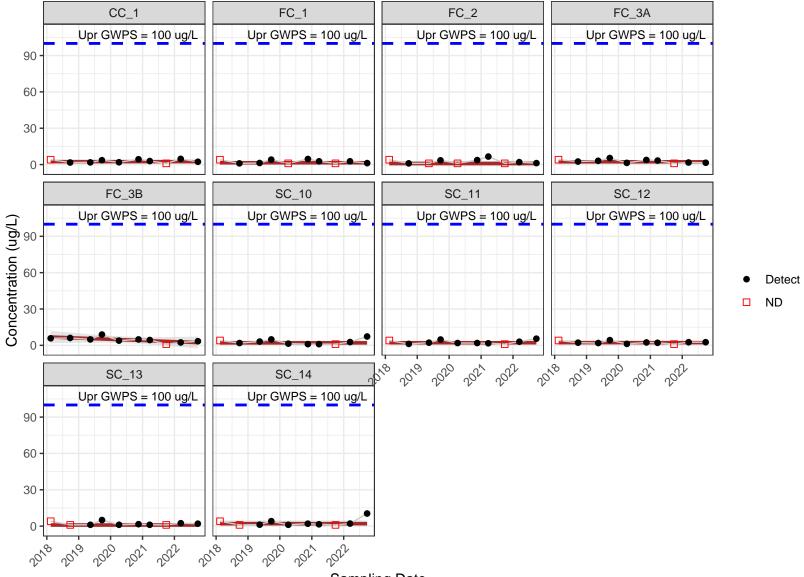

Confidence Interval Band Plots, Appendix IV Parameters

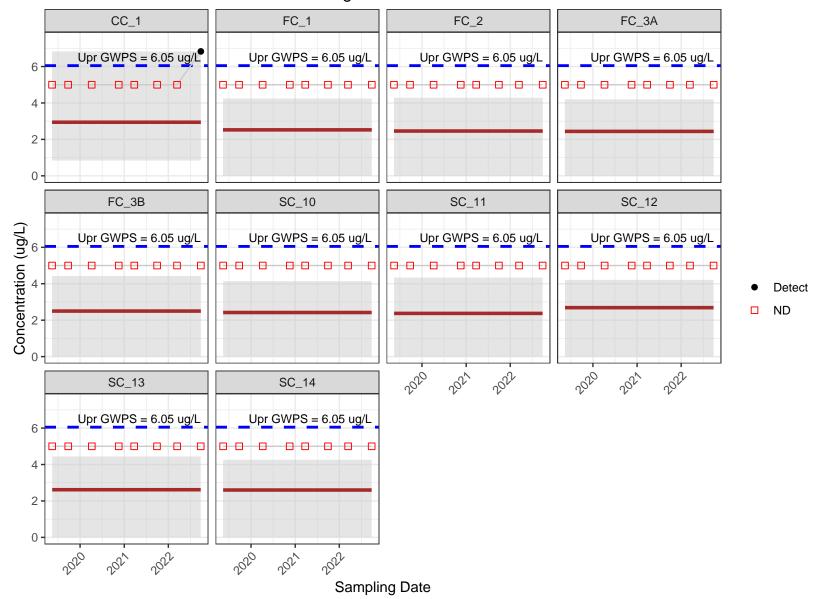


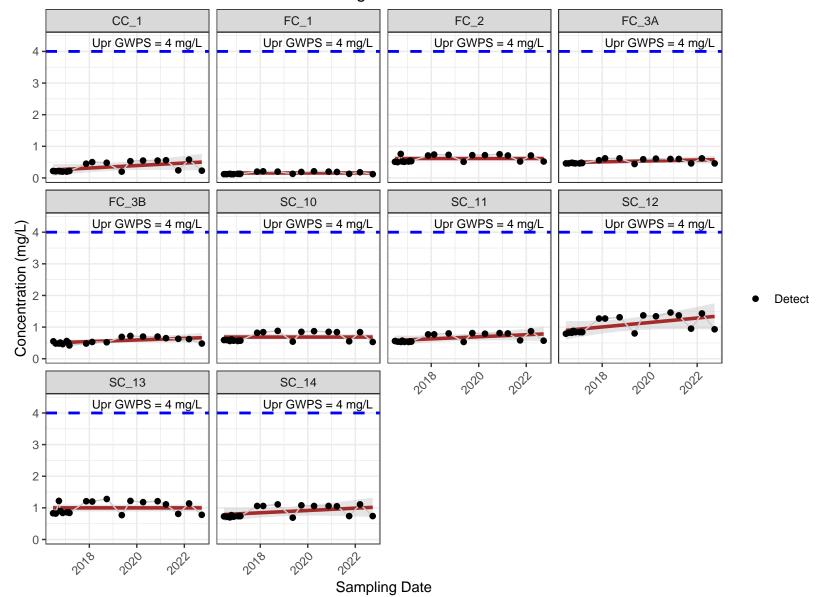
2022 Confidence Bands for Antimony: Target One-Sided 99% Confidence

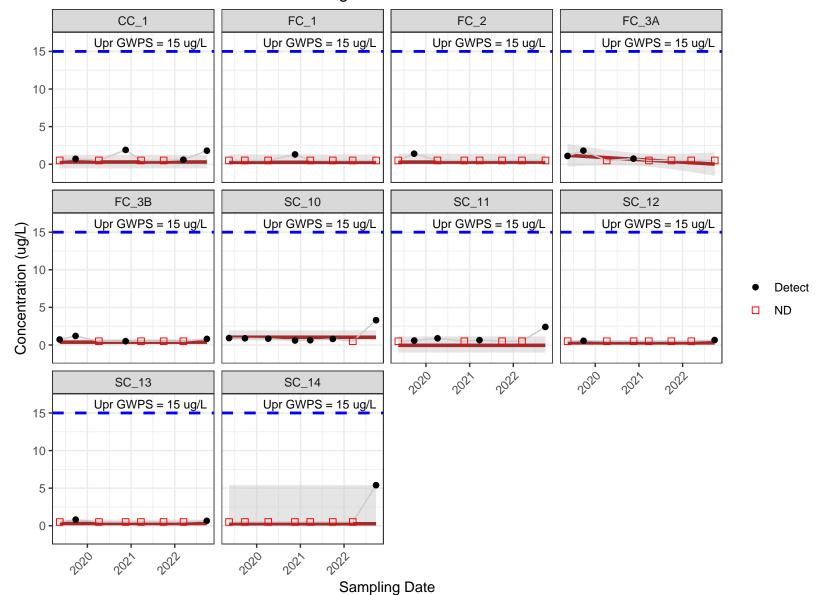


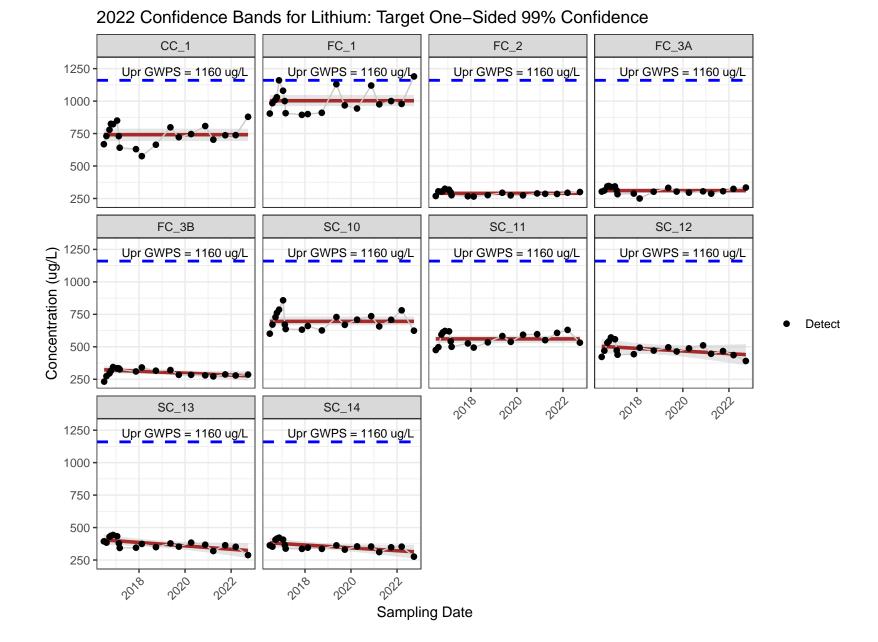
2022 Confidence Bands for Arsenic: Target One-Sided 99% Confidence

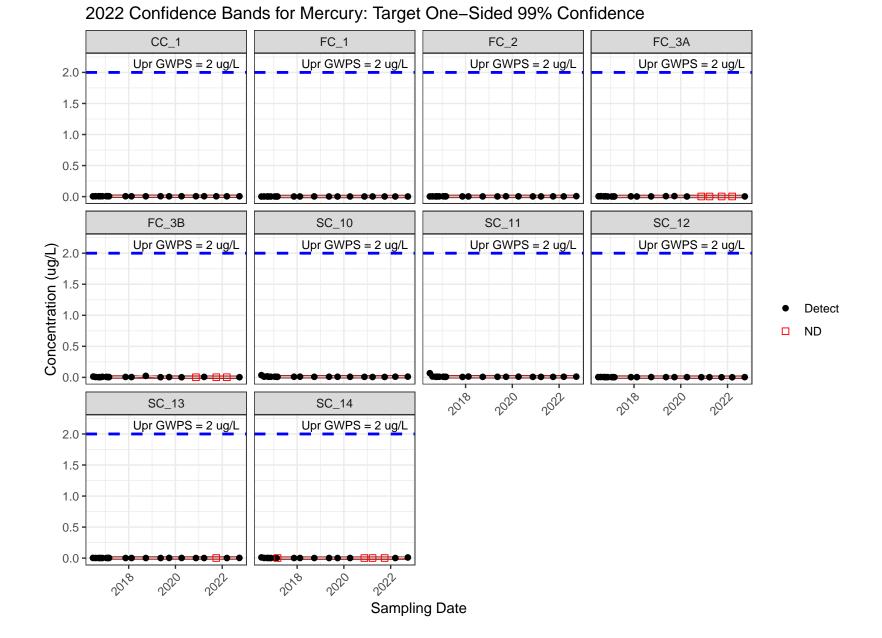


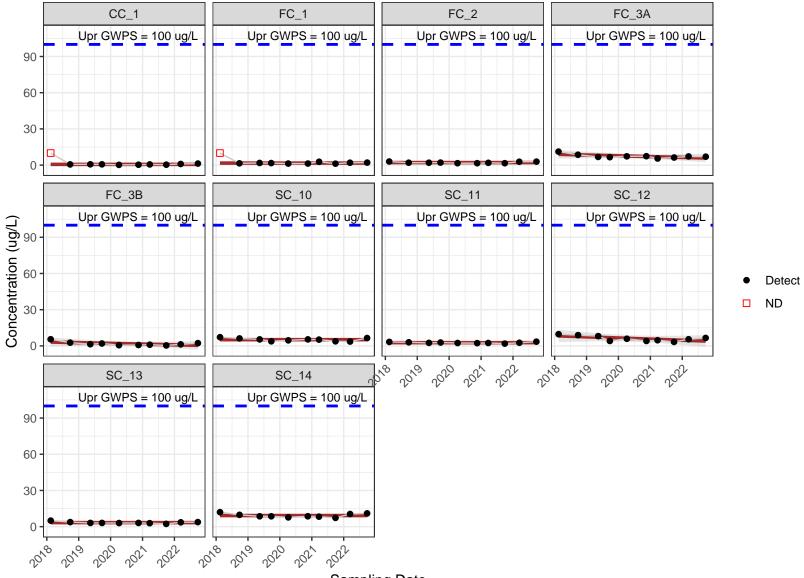

2022 Confidence Bands for Beryllium: Target One-Sided 99% Confidence


2022 Confidence Bands for Cadmium: Target One-Sided 99% Confidence

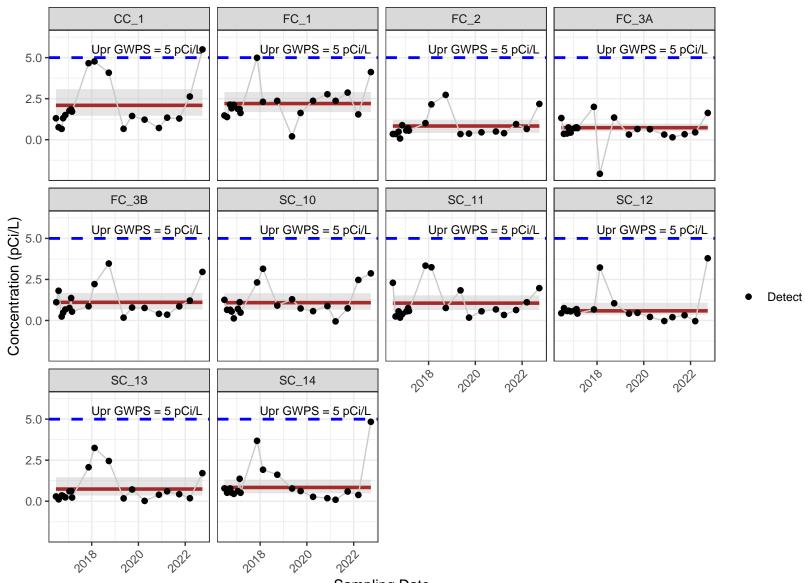

2022 Confidence Bands for Chromium: Target One-Sided 99% Confidence


2022 Confidence Bands for Cobalt: Target One-Sided 99% Confidence



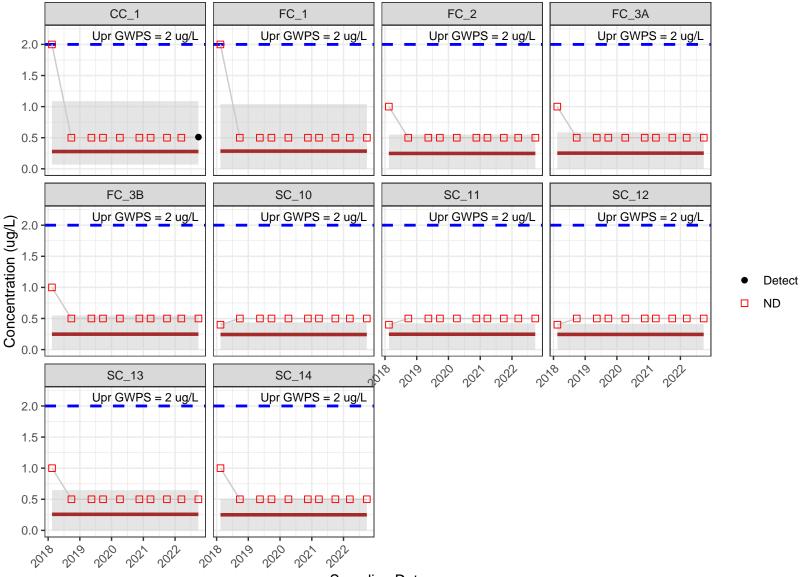

2022 Confidence Bands for Fluoride: Target One-Sided 99% Confidence

2022 Confidence Bands for Lead: Target One-Sided 99% Confidence



2022 Confidence Bands for Molybdenum: Target One-Sided 99% Confidence

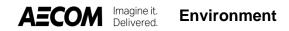
Sampling Date



2022 Confidence Bands for Rad226+228: Target One-Sided 99% Confidence

Sampling Date

2022 Confidence Bands for Selenium: Target One-Sided 99% Confidence

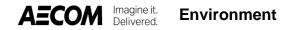


2022 Confidence Bands for Thallium: Target One-Sided 99% Confidence

Sampling Date

APPENDIX E

Alternative Source Demonstration



Prepared for Colorado Springs Utilities Submitted by AECOM Denver, Colorado 303-694-2770 April 2022

Coal Combustion Residuals (CCR) Landfill Alternative Source Demonstration Assessment Monitoring, Selenium

Clear Spring Ranch El Paso County, Colorado

Revision 0

Prepared for Colorado Springs Utilities Submitted by AECOM Denver, Colorado 303-694-2770 April 2022

Coal Combustion Residuals (CCR) Landfill Alternative Source Demonstration Assessment Monitoring, Selenium

Clear Spring Ranch El Paso County, Colorado

Revision 0

Mart K. Levoisen

Prepared By Mark Levorsen, PG, Principal Hydrogeologist

Reviewed By Dennis Connair, CPG, PG, Principal Geologist

toy CWalten

Approved By Steve Walker, PE, Senior Project Manager

TABLE OF CONTENTS

1	Introduction			
	1.1	Background		
2 3	Monit Alteri	toring Program native Source Demonstration (ASD) Under the CCR Rule		
	3.1	Hydrogeologic Site Conceptual Model		
		 3.1.1 Topography and Geology 3.1.2 Paleo-Alluvial Valleys 3.1.3 Groundwater Conditions 3.1.4 Groundwater Flow Directions and Streamlines		
	3.2	Chemical Signature Evaluation		
4 5 6	Limita	lusions ations ences		

ii

List of Tables

Table 1. CCR Detection Monitoring Wells	2-2
Table 2. Concentrations of Major Ions – February 2022 Sampling Event	3-6
Table 3. Concentrations of Selenium and Nitrate – February 2022 Sampling Event	3-7

List of Figures

Figure 1	Site Location Map
Figure 2	CCR Landfill Monitoring Well Locations
Figure 3	Top of Pierre Shale Bedrock Structure Contour Map
Figure 4	Potentiometric Surface Map – February 2022
Figure 5	Potentiometric Surface Map and Groundwater Flow Lines
Figure 6	Cross-Section A-A' (West to East)
Figure 7	Cross-Section B-B' (Northwest to Southeast)
Figure 8	Cross-Section C-C' (North to South)
Figure 9	Stiff Diagrams of Major Ion Concentrations with Potentiometric Surface
Figure 10	Selenium and Nitrate Concentrations with PCA HSU Potentiometric Surface
Figure 11	Boron Concentrations with PCA HSU Potentiometric Surface

List of Plates

Plate 1 Oxidation-reduction transformations of Se species in a soil and groundwater system. From Bailey et al. (2012)

List of Appendices

- Appendix A CCR Landfill Monitoring Well Completion Logs
- Appendix B Laboratory Results February 2022 Groundwater Sampling Event

List of Acronyms

ASD	Alternative Source Determination
CCR	coal combustion residuals
CD	Certificate of Designation
CDPHE	Colorado Department of Public Health and Environment
CFR	Code of Federal Regulations
CSR	Clear Spring Ranch
CSRRRF	Clear Spring Ranch Resource Recovery Facility
DLD	Designated Land Disposal
DTW	depth to water
GWPS	groundwater protection standards
HSU	hydrostratigraphic unit
μg/L	micrograms per liter
meq/L	milliequivalents per liter
mg/L	milligrams per liter
NHD	National Hydrography Dataset
РСА	Piney Creek Alluvium
RCRA	Resource Conservation and Recovery Act
SNL	Supernatant Lagoon
SSI	statistically significant increase
SSL	statistically significant level
TDS	total dissolved solids
USEPA	United States Environmental Protection Agency
USGS	United States Geological Survey
Utilities	Colorado Springs Utilities

Alternative Source Demonstration Certification

Certification Statement 40 CFR § 257.95(g)(3) – Alternative Source Demonstration Report for the existing Coal Combustion Residuals (CCR) Landfill, Clear Spring Ranch, El Paso County, CO, managed by the Colorado Springs Utilities.

I, Steve Walker, being a Registered Professional Engineer in good standing in the State of Colorado, do hereby certify, to the best of my knowledge, information, and belief, and in accordance with good engineering practice, that the factual or evidentiary basis of the interpretations and conclusions presented in this Alternative Source Demonstration Report are true and accurate, as required by 40 Code of Federal Regulations § 257.95(g)(3).

Steve Walker April 22, 2022

Certification Statement: 6 CCR § 1007-2 Part 1, Appendix B, Solid Waste Facility -Investigation. Reviewed and Sealed by a Colorado Professional Engineer or Reviewed by a Professional Geologist, as appropriate.

I, Mark Levorsen, being a Principal Hydrogeologist and Professional Geologist in AECOM's Denver office, having received baccalaureate and post-graduate degrees in the natural sciences, having sufficient training and experience in groundwater hydrology, and related fields, and being registered as a Professional Geologist in Wyoming (#1599), meet the requirements of 6 Code of Colorado Regulations (CCR) § 1007-2 Part1 for a "qualified ground water scientist". As required by 6 CCR § 1007-2 Part 1, I hereby certify to the best of my knowledge, information, and belief, and in accordance with good scientific practice, that the factual or evidentiary basis of the interpretations and conclusions presented in this Alternative Source Demonstration Report are true and accurate.

Mart K. Levorson

Mark K. Levorsen April 22, 2022

1 Introduction

At the request of Colorado Springs Utilities (Utilities), AECOM Technical Services, Inc. (AECOM) has prepared this Alternative Source Determination (ASD) for the detection of a statistically significant concentration of selenium in groundwater sampled from a downgradient monitoring well at the Clear Spring Ranch (CSR) Coal Combustion Residuals (CCR) Landfill (CCR Landfill or Site). The statistically significant level (SSL) was reported from groundwater sample results from Assessment monitoring in the Annual Update Statistical Analysis Report (MacStat, 2022) dated January 25, 2022.

This ASD was prepared as allowed by 40 Code of Federal Regulations (CFR) § 257.95(g)(3) of the United States Environmental Protection Agency (USEPA) CCR Rule to evaluate whether the detection of selenium at concentrations that represent SSLs above groundwater protection standards (GWPS) are the result of an alternative source. This ASD also meets the requirements of an investigation under Appendix B of the Colorado Department of Health and Environment (CDPHE) Regulations Pertaining to Solid Waste Sites and Facilities 6 CCR § 1007-2, Part 1 (Solid Waste Regulations). This demonstration will discuss how site geology, site topography and upgradient groundwater geochemistry combine to mobilize selenium naturally present within the Pierre Shale bedrock and alluvial sediments derived from Pierre Shale into groundwater, resulting in increased concentrations that are unrelated to the presence of the CCR Landfill.

1.1 Background

Clear Spring Ranch (CSR) is a 4,759-acre property located at the intersection of Interstate 25 and Ray Nixon Road, approximately 17 miles south of Colorado Springs (Figure 1). The property is in El Paso County, Colorado and located in Township 16 south, Range 65 west, sections 31 and 32, and Township 17 south, Range 65 west, sections 5 and 6. It was acquired in the 1970's by the City of Colorado Springs and is operated by Colorado Springs Utilities (Utilities). Monitoring well SC-10 is located adjacent to and downgradient of the CCR Landfill (Figure 2).

The land-use is authorized via a Certificate of Designation (CD) obtained from El Paso County (CD #004-001). The primary land uses on the CSR property are those related to utility services: electric generation and transmission, wastewater treatment and waste management (Clear Spring Ranch Resource Recovery Facility [CSRRRF]), and water treatment and delivery. Land use surrounding the CCR Landfill is shown on Figure 1.

The CCR Landfill is regulated by the CDPHE Hazardous Materials and Waste Management Division and the Local Governing Authority (i.e., El Paso County) under the Solid Waste Regulations and El Paso County's Land Development Code. It is also regulated under the Final CCR Rule promulgated by the USEPA under 40 CFR Part 257, Subtitle D of the Resource Conservation and Recovery Act (RCRA).

2 Monitoring Program

The current groundwater monitoring network is designed to monitor the CCR Landfill, which is bounded on the west by Fort Carson, on the east by the downgradient retention dam, on the south by a bedrock ridge, and on the north by the CSRRRF (Figure 1). Groundwater at the CCR Landfill is monitored by a system of groundwater wells, including hydraulically upgradient (background) and downgradient locations. Specifics related to the wells in the monitoring system are identified in Table 1, below, and the relative locations of the wells are shown in Figure 2.

As detailed in the CCR Landfill Groundwater Detection Monitoring Plan, the current groundwater quality monitoring well network for the CCR Landfill is comprised of five background wells (CC-1, FC-1, FC-2, FC- 3A, and FC-3B), four downgradient wells (SC-10, SC-11, SC-12, and SC-13) along the eastern edge of the landfill, and one cross gradient well (SC-14) on the south side of the landfill. Details of the construction of the monitoring well system are presented in Table 1.

Because of the downgradient detection of EPA CCR Rule Appendix III indicator parameters (boron and fluoride) at concentrations representing statistically significant increases (SSIs) relative to background/upgradient concentrations, the CCR Landfill unit has been subject to Assessment monitoring per 40 CFR § 257.95 since 2018, requiring monitoring of both the EPA CCR Rule Appendix III and IV constituents. Monitoring activities and data are presented in the annual reports that have been prepared to date (Utilities, 2021). Statistical methods are described in the Groundwater Detection Monitoring Plan (AECOM, 2017) and reported in an Annual Update Statistical Analysis Report (MacStat, 2022) each year.

Under Assessment monitoring, the monitoring wells for the CCR Landfill were sampled for Appendix III and IV constituents in March and September 2021. Groundwater Protection Standards (GWPSs) were established for all detected Appendix IV constituents as required by 40 CFR § 257.95(d)(2) and selenium was found to be present at a concentration in downgradient monitoring well SC-10 that represents an SSI above background and represents an SSL over the GWPS. The SSL determination was declared in the facility operating record on January 25, 2022.

Table 1. CCR Detection Monitoring Wells

Well ID	Monitoring Status	Date Installed	Easting	Northing	Ground Elevation (ft AMSL)	Borehole Total Depth (ft bgs)	Total Depth Elevation (ft AMSL)	Approximate Screen Depth (ft bgs)
CC-1	Background	6/1/1993	3223490.10	1280703.22	5476.72	38.00	5438.72	35-38
FC-1	Background	6/1/1993	3223188.50	1283319.32	5484.77	33.00	5451.77	28-33
FC-2	Background	6/1/1993	3223214.18	1282124.35	5480.80	28.00	5452.80	12.5-28
FC-3A	Background	6/6/2016	3223409.78	1282807.35	5481.78	34.75	5447.03	14-34
FC-3B	Background	6/10/2016	3223416.59	1282806.12	5481.29	55.10	5426.19	45-55
SC-10	Downgradient	6/9/2016	3226344.27	1283429.38	5445.51	35.25	5410.26	15-35
SC-11	Downgradient	6/7/2016	3226375.25	1283151.86	5442.18	30.66	5411.52	10-30
SC-12	Downgradient	6/7/2016	3226399.83	1282807.44	5442.11	25.83	5416.28	5-25
SC-13	Downgradient	6/8/2016	3226376.49	1282422.33	5443.61	23.16	5420.45	5-22.5
SC-14	Cross-gradient	6/10/2016	3225699.68	1282348.17	5447.98	28.08	5419.90	8-28

Notes:

Coordinate system: Colorado State Plane (Central Zone)

Horizontal datum: NAD 83/86, US Survey Foot

Vertical datum: NGVD 29, US Survey Foot

Ground surface elevation from February 2022 survey

ft bgs = feet below ground surface

ft AMSL = feet above mean sea level

3 Alternative Source Demonstration (ASD) Under the CCR Rule

Part 257.95(g)(3) of the CCR Rule allows the Owner or Operator 90 days from the date of the initial SSL determination (January 25, 2022) to demonstrate that:

- A source other than the CCR unit caused the SSL or;
- The apparent SSL resulted from errors in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

Accordingly, the potential for alternative sources of this sort to have affected the groundwater monitoring results at the CCR Landfill monitoring well network was evaluated.

The working hypothesis for this ASD is that the SSL for selenium resulted from a source other than the CCR unit; specifically, naturally-occurring selenium within the alluvial sediments and underlying Pierre Shale (bedrock) was released and mobilized into groundwater in response to oxidizing conditions in the groundwater originating upgradient of the CCR Landfill.

Multiple lines of evidence are used for this ASD, as presented in the following subsections.

3.1 Hydrogeologic Site Conceptual Model

3.1.1 Topography and Geology

The CCR Landfill is located in one of the upper reaches of an unnamed drainage area south of Little Fountain Creek (Figure 1). The drainage is a generally west-east trending broad and gently-sloping topographic depression that is bounded to the north and south by outcrops of the Pierre Shale (Figure 3). The land slopes gently up to the west along primarily ephemeral to intermittent drainages from the Fort Carson Military Reservation, originating in the Front Range. Smaller ephemeral to intermittent drainages originate from the north, northwest, and northeast and enter the lower valley in the area above the retention dam. To the east is the Fountain Creek alluvial valley.

The Geologic Map of the Pueblo 1° X 2° Quadrangle published by the United States Geological Survey (Scott et al., 1978), indicates the drainages in the area are comprised of up to 50 feet of Quaternary unconsolidated alluvial sediments overlying bedrock consisting of the Cretaceous-aged Pierre Shale. This is confirmed by over 80 test holes completed by Utilities in the area. AECOM reviewed the available boring logs from these test holes. The depth to bedrock ranged from 2 to 50 feet (average 22 feet) in the boring logs reviewed. These unconsolidated sediments, referred to as the Piney Creek Alluvium (PCA) on the geologic map (Scott et al., 1978), consist of horizontal layers of clay and silty clay with isolated lenses of sand and gravel deposited as alluvial valley fill following the last glacial period roughly 11,000 years ago. The alluvial valley fill was deposited in paleo-valleys eroded down into the Pierre Shale bedrock. Boring logs describe the clayey alluvium as medium stiff to stiff, low to moderate density, low to moderate cohesion, low plasticity, yellowish-brown to grayish-brown to brown clay. Bedding is poorly defined except for a thin layer of sand or gravel near the base of the deposit at some locations. The thickness of the sand and gravel intervals, where present and noted in boring logs for monitoring wells ranged from 0.1 to 7 feet, with an average of roughly 3.6 feet. The thicker sandy intervals observed in monitoring wells were approximately 5 feet thick at wells SC-1, SC-9, SC-10, and CC-2. The thickest sand/gravel interval noted in any of the boring logs from geotechnical borings and monitoring wells was 20 feet at test hole 77-13. Sandy intervals approximately 9 to 11 feet thick were observed at test holes 77-11, 77-17, and 77-18 immediately southeast of the CCR Landfill in the area of the southern drainage.

Higher topographic features to the northeast and south of the CCR Landfill consist of Pierre Shale rock outcrops overlain by Pleistocene-aged gravelly alluvium correlated to the Slocum alluvium (Scott et al., 1978).

The Pierre Shale (Kp) is a Cretaceous-aged marine shale comprising the bedrock underlying the entire site. Boring logs describe the shale as hard, fractured, high density, low moisture, low cohesion, low plasticity, gray shale, often accompanied by "core-barrel refusal". Many boring logs describe a transitional claystone material above hard shale bedrock. The claystone is very stiff, dark gray, non-plastic, blocky, and mottled brownish-yellow and dark gray.

3-2

3.1.2 Paleo-Alluvial Valleys

The PCA was deposited in drainages eroded down into the Pierre Shale bedrock. The original depositional and surface topography of the site area is obscured by construction of the CCR Landfill, and the CSRRRF features at the site since initial operations began in the late 1970s.

Figure 3 is a structure contour map for the elevation of the top of the Pierre Shale bedrock in the area. The base map for Figure 3 is a black and white aerial image taken in 1947, which was used by AECOM to delineate the drainages present prior to construction activities. The bedrock contouring on the map was constructed in ArcMap from review of information available for roughly 80 boreholes from site investigations in the area dating back to 1977. Borehole locations considered are shown on Figure 3. Supplemental information used to inform construction of the contours shown on the bedrock elevation map includes:

- A black and white aerial image of the area from 1947, prior to development in the area. Provided to AECOM by Utilities. Drainages are easily identified in the imagery.
- The National Hydrography Dataset (NHD) Flowline (streams) dataset and NHD Contour (20-foot elevation contours) dataset available from the United States Geological Survey (USGS). The NHD Flowlines were extended up into watersheds by AECOM using the 1947 aerial image.
- The 1994 revision of the 1961 USGS 7.5-minute topographic map for the Buttes quadrangle.

An important observation provided by Figure 3 is the presence of a bedrock high beneath the northwest and central region of the CCR Landfill. This area is currently covered with ash material. The ash extends over this bedrock high and over portions of the paleo-alluvial valleys to the north, west, and south of the bedrock high. The bedrock high forms / delineates two separate paleo-alluvial valleys beneath the CCR Landfill: the North and South Paleo-Alluvial Valleys. A third paleo-alluvial valley is located to the northeast of the CCR Landfill; the Northeast Paleo-Alluvial Valley.

3.1.3 Groundwater Conditions

Based on review of boring logs in the Site area, two hydrostratigraphic units (HSUs) have been identified: the shallow PCA HSU (where it exists) and the uppermost weathered and unweathered zone of the underlying Pierre Shale (Kp) HSU. The PCA HSU is underlain by approximately 3,500 to 4,000 feet of Pierre Shale (Kp) that forms a hydraulic barrier between the alluvium and any potential deeper water-bearing formations, if present.

Water level measurements indicate that the saturated thickness of the PCA HSU ranges from approximately zero (dry) to 22 feet, with an average of 12 feet based on depth to water measured in monitoring wells and depth to water encountered or absence of water noted during drilling a borehole.

Figure 3 includes an outline of the interpreted contact between the saturated PCA HSU sediments within the paleo-alluvial valleys and the non-saturated soil / bedrock at higher elevations along the valley margins. The location of the interpreted boundary line is approximate and based on comparison of groundwater elevations calculated from depth to groundwater noted in many boring logs and interpolation of groundwater elevation from existing wells. This boundary line represents the approximate lateral extent of saturated PCA HSU sediments (alluvial valley fill) within each drainage.

Groundwater present within the PCA HSU flows hydraulically downgradient to the east-southeast following the contour of the top of the alluvium-Pierre Shale contact. The extent of the PCA HSU is restricted to the aforementioned paleo-alluvial valleys, and therefore groundwater flow in the uppermost saturated unit both upgradient and downgradient of the CCR Landfill is controlled by the locations of the paleo-alluvial valleys. The CCR Landfill is constructed over portions of two paleo-alluvial valleys separated by a bedrock high.

3.1.4 Groundwater Flow Directions and Streamlines

Figure 4 is a potentiometric surface contour map of the PCA HSU constructed using depth to water (DTW) measurements obtained on February 8 and 9, 2022 from the 10 monitoring wells defined as the CCR Landfill's Detection Monitoring Network, and from 10 additional monitoring wells historically drilled at the Site. Utilities obtained the DTW measurements and groundwater samples from these monitoring wells to provide a fuller understanding of groundwater conditions around the CCR Landfill for purposes of this ASD. Three of the 20 wells monitored are completed with long screen intervals that are largely within the Kp HSU (WW-3A, WW-5A, and WW-6A). Due to the lack of wells completed in the PCA HSU in these upgradient locations, groundwater

elevations for these three Kp HSU wells were used as general guidance to construct the potentiometric surface map for the PCA HSU. The potentiometric contour lines are dashed in the upper portions of the North and Northeast Paleo-Alluvial Valleys. The groundwater elevation for well FC-3B, which is completed entirely within the Kp HSU, was not used to construct the contour map.

Three paleo-valley areas are shown on Figure 3, and they all converge immediately downgradient and east of the CCR Landfill and above the retention dam. Groundwater flow beneath the north side of the CCR Landfill originates to the north and northwest of the CCR Landfill. Well SC-10 is completed in groundwater present within this drainage. Two monitoring wells (SC-8 and SC-9) are located along the north perimeter of the CCR Landfill facility but are not currently monitored as part of the CCR Landfill Detection Monitoring Plan. The presence of this upgradient flow from the north suggests that groundwater quality data used currently to compute background concentrations for the CCR Assessment monitoring program may not accurately reflect the full effect of background groundwater quality below the north portion of the CCR Landfill.

Groundwater flow beneath the south side of the CCR Landfill enters the Clear Spring Ranch property from the Fort Carson area to the west. Upgradient monitoring wells CC-1, FC-1, FC-2, FC-3A, and FC-3B are situated at the head of this drainage and are currently used to compute background concentrations for the CCR Assessment monitoring program. Well SC-14 is designated a cross-gradient monitoring well and wells SC-12 and SC-13 as CCR Landfill downgradient monitoring wells. Groundwater quality data used currently to compute background concentrations for the CCR Assessment monitoring program are located upgradient of these monitoring wells and reflect groundwater quality upgradient of the *south* side of the CCR Landfill.

Figure 5 is a map showing the addition of groundwater flow lines on the groundwater potentiometric surface presented in Figure 4. The groundwater flow lines are shown as light blue colored lines drawn perpendicular to potentiometric surface contours. Groundwater flow lines are subparallel streamlines that do not cross adjacent streamlines. As interpreted from review of the bedrock structural contour map and the paleo-alluvial valleys present in the area prior to development of the facility, groundwater present beneath the south side of the CCR Landfill is hydraulically separated from and cannot flow to wells SC-10 and SC-11. This line of evidence is based on existing hydrogeologic conditions and is further supported by analysis of patterns in groundwater chemistry presented in the next section.

Three hydrogeologic cross sections are provided as Figures 6, 7, and 8. The cross-sections illustrate locations of groundwater flow paths in the two paleo-alluvial valleys present beneath the CCR Landfill. Cross section locations are shown on the inset map provided on each figure.

Figure 6 (cross section A-A') extends from west to east in the drainage present immediately south of the CCR Landfill. The line of section is not an exact streamline but is a fair representation of geologic conditions along a streamline in this drainage. Groundwater originates on the west edge of the property, represented by upgradient background well FC-2 adjacent to Fort Carson, and flows within the PCA HSU within the confines of the drainage. The south side of the CCR Landfill extends across the top of the north edge of this paleo-alluvial valley. Well SC-14 is designated a cross-gradient monitoring well and well SC-13 as a downgradient monitoring well.

Cross section B-B' (Figure 7) is oriented from northwest to southeast and includes well SC-10. The upgradient extent of Figure 7 is well WW-3A, which is screened predominantly in the Kp HSU, and therefore the groundwater elevation shown is likely lower than the groundwater elevation in the PCA HSU in this area. Well SC-9 is located on the north perimeter of the CCR Landfill and hydraulically upgradient of well SC-10, and nearly on a coincident streamline. Downgradient well SC-7, although not included in the CCR Landfill Detection Monitoring Plan, is also closely aligned with these streamlines. The horizontal hydraulic gradient is relatively steep to the west of well SC-10 and becomes gentler as groundwater enters the lower reaches of the alluvial valley which is broader and gentler than the upper reaches.

Figure 8 shows cross section C-C', which extends north to south through the downgradient edge of the CCR Landfill. The cross section shows the relatively abrupt transition in elevation from the bedrock high (77-15) to the north of well SC-10 down into the paleo-alluvial valley (SC-13 and 77-17). Cross section C-C' orientation (north-south) is essentially perpendicular to the direction of groundwater flow along the toe of the CCR Landfill.

Groundwater elevations in wells SC-10, SC-11, and SC-12 vary by less than two thirds of a foot. A dashed potentiometric surface contour for elevation 5432.5 ft MSL is shown on Figures 4 and 5 across the downgradient edge of the CCR Landfill. The similarity of groundwater elevations between these three wells increases the

3-3

accuracy of the interpolation and the placement and shape of the 5432.5-foot contour guides the orientation of nearby potentiometric contours in this area.

Approximately one mile east of the CCR Landfill, the combined South, North, and Northeast drainages intersect the north-south alluvial channel of Fountain Creek. The Fountain Creek Alluvium serves as a productive aquifer used primarily for agricultural and industrial purposes near CSR. The hydraulically-upgradient portion of the paleo-alluvial valleys occupied by the CCR Landfill is isolated from the Fountain Creek aquifer by a retention dam installed by Utilities in 1978 (Figure 1). The retention dam, located approximately 3,000 feet downgradient (east) of the landfill (Figure 1), has a bentonite core and is keyed into the Pierre Shale bedrock. It captures surface water runoff from the CCR Landfill and also restricts groundwater flow in the PCA HSU. A French drain or interceptor trench is present on the southern portion of the downgradient (east) side of the retention dam. Groundwater intercepted by the drain is pumped back into the upstream side of the retention dam.

3.1.5 Summary of ASD Hydrogeologic Lines of Evidence

Groundwater flow within the PCA HSU beneath the CCR Landfill is split between two buried paleo-alluvial valley drainages, a North Paleo-Alluvial Valley, and a South Paleo-Alluvial Valley. The North and South Paleo-Alluvial Valleys are separated by a bedrock high situated beneath the west-central region of the CCR Landfill.

Groundwater present in the North Paleo-Alluvial Valley originates from a different upgradient area than groundwater present in the South Paleo-Alluvial Valley.

Groundwater beneath the CCR Landfill downgradient compliance boundary originates from multiple discrete flow paths. Groundwater samples from compliance wells SC-10 and SC-11 are derived from the North Paleo-Alluvial Valley. Groundwater samples from wells SC-12, SC-13, and SC-14 are derived from the South Paleo-Alluvial Valley.

Current Program wells used to establish background concentrations of constituents are located within and are only representative of groundwater in the South Paleo-Alluvial Valley.

3.2 Chemical Signature Evaluation

The second line of evidence explored for the ASD is a comparison of the chemical signature of the affected groundwater at SC-10 to that of the other monitoring wells surrounding the CCR Landfill. To accomplish this, samples were collected from 20 groundwater wells in and around the CCR Landfill. These include groundwater samples collected from the 10 CCR Landfill Detection Monitoring Plan wells plus additional wells in the area.

All samples were collected in general accordance with the procedures established in the 2017 Groundwater Detection Monitoring Plan (AECOM, 2017). Field parameter measurements were collected at the time of sample collection. All samples were submitted for analysis of the CCR Rule Appendix III and Appendix IV parameters. In addition, samples from all wells were submitted for ionic chemistry parameters including alkalinity, magnesium, potassium, sodium, sulfate, chloride, total dissolved solids (TDS) and nitrate. The sample analytical data from groundwater samples collected in February 2022 are in summary tables presented in Appendix B.

As discussed below, the data support the conclusion of the hydrogeologic line of evidence that the background chemistry affecting the southern compliance wells SC-12, SC-13, and SC-14 is different from the background affecting the northern compliance wells SC-10 and SC-11.

Ionic Chemistry

Figure 9 is a map illustrating the general water chemistry from concentrations of the major cations and anions and TDS. This data is overlaid on the February potentiometric surface. Concentrations of major ions were converted to milliequivalents per liter (meq/L), which normalizes the concentrations based on molecular weight and valence (+ or -) of the ion. The results are shown using a Stiff diagram to visualize the relative distribution or percentage of individual cations on the left side of the diagram (Na+K, Ca, and Mg) and anions on the right side of the diagram (Cl, HCO³, and SO⁴) in each sample. The relative width of the diagram for each ion represents the relative proportion of the ion in the sample. Ion concentrations in milligrams per liter (mg/L) and meq/L equivalents are summarized in Table 2.

The Stiff diagrams show similar shapes along groundwater streamlines in two areas on Figure 9. Major ion distributions are similar between wells SC-9 and SC-10 in the North Paleo-Alluvial Valley, with similar proportions

of sodium, magnesium, sulfate, and chloride. In the South Paleo-Alluvial Valley, the Stiff diagrams for wells SC-14, SC-13, and SC-2 are similar and located along the same groundwater streamline. Unfortunately, direct comparison of the data is compromised due to unequal amounts of cation versus anion ions for several groundwater samples. The charge balance error exceeded 20 percent for samples FC-1, FC-2, SC-2, SC-3, SC-8, SC-11, SC-13, SC-14, and WW-3A. This potentially represents a disequilibrium in the groundwater chemistry at some locations potentially associated with the chemically reactive nature of the recharge that it receives. The charge balance error may also be caused by interference between groundwater constituents in some laboratory analyses. It appears that for the samples with charge balance errors exceeding 20 percent, the relative proportion of sulfate and chloride (both anions) are biased low when compared to other sample results. Although the charge balance error is high for the three locations in the South Paleo-Alluvial Valley (SC-14, SC-13, and SC-2), ion concentrations and relative ratios for the major ions are all quite similar.

Selenium Relationships

Figure 10 is a map illustrating the selenium and nitrate concentrations from the 20 wells sampled in February 2022. This data is overlaid on the February potentiometric surface and groundwater streamlines (Figure 5). Review of this map shows the difference between groundwater concentrations of selenium and nitrate in samples collected from the North Paleo-Alluvial Valley that are many times higher than concentrations for wells located in the South Paleo-Alluvial Valley. This is significant because high nitrate concentrations can aid in the dissolution of selenium from shale.

The selenium concentration in well SC-10 exceeded the GWPS and was reported as an SSL on January 25, 2022. The GWPS calculated from sample analysis of upgradient/background groundwater samples at the time of the 2021 September sampling event was 199 ug/L (0.199 mg/L) for selenium. However, the background monitoring wells currently used to calculate this GWPS are located in the South Paleo-Alluvial Valley and are not located in the North Paleo-Alluvial Valley that provides groundwater flow to wells SC-10 and SC-11.

Table 3 summarizes the selenium and nitrate concentrations for the monitoring wells sampled in February 2022. The Table 3 results for the wells are separated by paleo-alluvial valley location into the South Paleo-Alluvial Valley, the North Paleo-Alluvial Valley, and Northeast Paleo-Alluvial Valley areas. Twelve (12) of the wells are located within the South Paleo-Alluvial Valley, including all 5 of the background wells used in the CCR Landfill Detection Monitoring Plan. The average, minimum, and maximum selenium concentrations for wells in the South Paleo-Alluvial Valley are 31, 4.1, and 184 μ g/L, respectively. The corresponding nitrate concentrations in the South Paleo-Alluvial Valley are 9, 0.1, and 31 mg/L (average, minimum, and maximum, respectively). In the North Paleo-Alluvial Valley there are only 5 monitoring wells, including 2 of the 5 compliance downgradient wells (SC-10 and SC-11). The average, minimum, and maximum selenium concentrations in the North Paleo-Alluvial Valley are 171, 63.3, and 213 ug/L, respectively. The corresponding nitrate concentrations in the North Paleo-Alluvial Valley are 430, 150, and 1100 mg/L (average, minimum, and maximum, respectively).

Further evidence of the association of elevated nitrate concentrations enhancing the dissolution of selenium from the Pierre Shale bedrock at the site is illustrated by groundwater concentrations of nitrate and selenium at wells WW-5A and WW-6A and shown on Figure 10. Both monitoring wells are located in the Northeast Paleo-Alluvial Valley, and groundwater within this drainage does not flow beneath the CCR Landfill. Both wells encountered "hard black, green shale" at 22 to 23 feet below ground surface and noted groundwater at the contact between oxidized shale and underlying hard bedrock. Both wells are completed with 40-foot-long screens straddling the lower 10 feet of oxidized shale and underlying 30 feet of hard shale. Groundwater concentrations in samples collected in February 2022 of selenium and nitrate, respectively, are 412 μ g/L and 750 mg/L at well WW-6A and 205 μ g/L and 160 mg/L at well WW-5A. The presence of elevated selenium and nitrate concentrations at these two wells is clearly unrelated to the presence and operation of the CCR Landfill.

An additional line of evidence is provided based on the distribution of boron in the February 2022 groundwater sample data (Figure 11). Boron concentrations in groundwater initially triggered the move from Detection to Assessment monitoring at the CCR Landfill several years ago. The concentration of boron in well SC-10, the well triggering the SSL for selenium, is one-half to one-third of the concentration of boron that triggered Assessment monitoring and remains below the upper predictive limit for background, suggesting that the selenium is unrelated to the landfill.

3-5

Table 2. Concentrations of Major Ions – February 2022 Sampling Event

Well-ID	Sodium (mg/L)	Sodium (meq/L)	Calcium (mg/L)	Calcium (meq/L)	Magnesium (mg/L)	Magnesium (meq/L)	Potassium (mg/L)	Potassium (meq/L)	Chloride (mg/L)	Chloride (meq/L)	Bicarbonate (mg/L)	Bicarbonate (meq/L)	Sulfate (mg/L)	Sulfate (meq/L)	Ion Balance (percent)
CC-1	5900	256.63	422	21.06	2320	190.87	32.4	0.83	1690	47.67	588	9.64	21200	441.39	-3
FC-1	5330	231.84	383	19.11	692	56.93	31.2	0.80	389	10.97	926	15.18	7350	153.03	26.5
FC1A	5890	256.20	421	21.01	1440	118.47	24.5	0.63	1390	39.21	803	13.16	16900	351.86	-1
FC-2	1640	71.34	395	19.71	613	50.43	2.58	0.07	58.6	1.65	350	5.74	3400	70.79	28.8
FC-2A	2370	103.09	425	21.21	636	52.32	15.1	0.39	168	4.74	367	6.01	7610	158.44	2.3
FC-3A	1450	63.07	405	20.21	536	44.10	2.74	0.07	130	3.67	369	6.05	5840	121.59	-1.5
FC-3B	2050	89.17	218	10.88	140	11.52	11.8	0.30	222	6.26	750	12.29	4530	94.32	-0.4
SC-10	3750	163.11	440	21.96	875	71.99	10.3	0.26	997	28.12	584	9.57	10300	214.45	1
SC-11	3040	132.23	437	21.81	702	57.75	12.2	0.31	554	15.63	385	6.31	4310	89.74	31
SC-12	2710	117.88	381	19.01	751	61.79	3.96	0.10	298	8.41	388	6.36	8560	178.22	1.5
SC-13	1940	84.38	379	18.91	733	60.30	2.95	0.08	82	2.31	405	6.64	3870	80.57	29.3
SC-14	1970	85.69	382	19.06	742	61.04	3.5	0.09	77.8	2.19	407	6.67	3960	82.45	29
SC-2	2020	87.86	375	18.71	741	60.96	2.85	0.07	160	4.51	421	6.90	3770	78.49	30.2
SC-3	4390	190.95	377	18.81	1250	102.84	6.75	0.17	352	9.93	292	4.79	7270	151.36	30.6
SC-7	4040	175.73	383	19.11	1010	83.09	12.5	0.32	531	14.98	836	13.70	11400	237.35	2.3
SC-8	1790	77.86	588	29.34	883	72.65	6.54	0.17	1340	37.80	762	12.49	3260	67.87	20.7
SC-9	4170	181.38	434	21.66	1240	102.02	19.1	0.49	1410	39.77	724	11.87	11400	237.35	2.8
WW-3A	3560	154.85	391	19.51	796	65.49	32.7	0.84	163	4.60	914	14.98	5690	118.47	27.1
WW-5A	1580	68.73	477	23.80	468	38.50	6.96	0.18	374	10.55	584	9.57	5040	104.93	2.4
WW-6A	13700	595.91	425	21.21	1410	116.00	72.8	1.86	750	21.16	1570	25.73	31500	655.84	2.2

Notes:

mg/L = milligrams per liter

meq/L = milliequivalents per liter

Well ID	Monitoring Status	HSU	Paleo- Alluvial Valley	Selenium (ug/L)	Nitrate + Nitrite (mg/L)
CC-1	Background	PCA	South	184	26
FC-1	Background	PCA	South	9.8	18
FC-2	Background	PCA	South	34.4	4.5
FC-3A	Background	PCA	South	38.5	3.2
FC-3B	Background	Кр	South	4.8	<0.1
SC-12	Downgradient	PCA	South	13.8	9.9
SC-13	Downgradient	PCA	South	25.1	2.8
SC-14	Cross-gradient	PCA	South	5.2	1.6
FC-1A	Not (upgradient)	PCA	South	20.1	31
FC-2A	Not (upgradient)	PCA	South	4.1	0.34
SC-2	Not (downgradient)	PCA	South	12.9	2.5
SC-3	Not (downgradient)	PCA	South	21.7	5.5
	Average		South	31	9
	Minimum		South	4.1	0.1
	Maximum		South	184	31
SC-10	Downgradient	PCA	North	210	240
SC-11	Downgradient	PCA	North	213	150
SC-7	Not (downgradient)	PCA	North	162	230
SC-8	Not (upgradient)	PCA	North	63.3	1100
SC-9	Not (upgradient)	PCA	North	205	430
WW-3A	*	Кр	North	4.1	82
WW-6A	*	Кр	North	412	750
	Average*		North	171	430
	Minimum		North	63.3	150
	Maximum		North	213	1100
WW-5A	*	Кр	Northeast	205	160

Table 3. Concentrations of Selenium and Nitrate – February 2022 Sampling Event

Notes:

*Wells WW-3A (Kp HSU), WW-5A (Northeast Paleo-Alluvial Valley, Kp HSU), and WW-6A (Northeast Paleo-Alluvial Valley, Kp HSU) shown but not included in calculations of average, minimum or maximum because they are screened primarily in the Kp HSU.

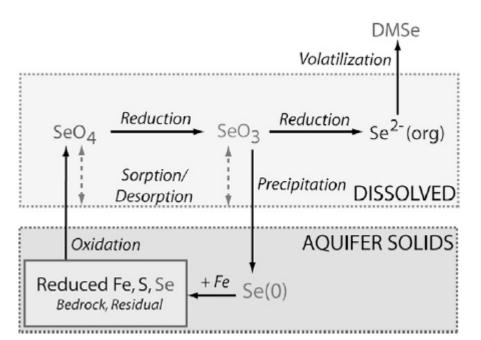
Monitoring Status refers to whether the well is in the CCR Landfill Detection Monitoring Program or whether it is not in the CCR Landfill Monitoring Program ("Not"). Also, if the well is a background monitoring well, an upgradient monitoring well (not in the CCR Landfill Monitoring Program), or a downgradient monitoring well.

ug/L = micrograms per liter

mg/L = milligrams per liter

Selenium Groundwater Chemistry

The detection of selenium above the GWPS at well SC-10 appears to be related to the occurrence of elevated groundwater nitrate concentrations in the North Paleo-Alluvial Valley and is likely from conditions that are unrelated to the presence or operation of the CCR Landfill as discussed below.


Selenium (Se) is known to be naturally elevated in the Pierre Shale bedrock (Kp HSU) and in the overlying PCA HSU clay-dominated sediments that comprise the uppermost aquifer at the Site. This condition and the potential for selenium to be mobilized into groundwater from the shale and shale-derived sediments is well documented in literature for the Colorado Front Range and in the Site vicinity as discussed below.

The geochemical conditions that create the potential for selenium to mobilize from the Pierre Shale involve the oxidizing conditions in the groundwater present at the site. The term "oxidizing conditions" refers to the oxidation-reduction potential, or redox state, of the groundwater. Redox processes require one chemical species that donates electrons and another chemical species that accepts those electrons. As a chemical species donates electrons it is oxidized and as the other species accepts electrons it is reduced. In general, if dissolved oxygen is present in the water, it is the preferred electron acceptor, however, oxygen present in oxygen-bearing compounds such as nitrate can also provide a source of electron acceptance in groundwater.

According to Bailey et al. (2012), "oxidation of reduced Se from shale by autotrophic denitrification is a major driver in the release of SeO₄ and sulfate. For the process of autotrophic reduction, O_2 -rich or NO₃-rich groundwater coming into contact with shale present in the shallow or deep subsurface layers oxidizes reduced Se to mobile forms. Also, SeO₄ can be produced through oxidation of residual Se by O_2 or NO₃ (Plate 1), for example in the oxidation of FeSe₂ within geologic formations:"

 $5\text{FeSe}_2 + 14\text{NO}_3^- + 4\text{H}^+ \rightarrow$ $5\text{Fe}^{2+} + 10\text{SeO}_4^{2-} + 7\text{N}_2 + 2\text{H}_2\text{O}$

Bailey (2012) also states that, "Selenium is present in nature primarily in the four oxidation states of (Se VI) selenate [SeO₄²⁻], (Se IV) selenite [SeO₃²⁻], elemental selenium [Se⁰], and Se (-II) selenide [Se²⁻]. Soluble species of Se include SeO₄, SeO₃, whereas Se⁰ and forms of Se²⁻ are insoluble and hence immobile unless suspended. Due to the biogeochemistry of Se and its dependence on redox conditions, Se speciation is largely dependent on local environmental conditions, although SeO₄ has been reported to account for approximately 90 to 95% of soluble Se in oxygenated agricultural waters (Masscheleyn et al., 1990; Gates et al., 2009)."

Plate 1. Oxidation-reduction transformations of Se species in a soil and groundwater system. DMSe, dimethyl-selenide. From Bailey et al. (2012)

Cretaceous-aged marine shales were deposited across a broad region of Colorado during the time the Cretaceous Interior Seaway was present in the mid-continent. The Colorado Cretaceous-aged marine shales present east of the Continental Divide are named the Pierre Shale, and west of the divide the Mancos Shale. Mills et al. (2016) studied selenium distribution and mobilization in the Mancos Shale in the Uncompany River Basin and reported: "We analyzed Se species, major and trace elements, and stable nitrogen and oxygen isotopes of nitrate in groundwater and aquifer sediments to examine processes governing selenium release and transport in the shallow groundwater system." Groundwater Se concentrations ranged from below detection limit (< 0.5 micrograms per liter [μ g/L]) to 4070 μ g/L, and primarily are controlled by high groundwater nitrate concentrations that maintain oxidizing conditions in the aquifer despite low dissolved oxygen concentrations. High nitrate concentrations in non-irrigated soils and nitrate isotopes indicate nitrate is largely derived from natural sources in the Mancos Shale and alluvial material.

A study of the occurrence of selenium in groundwater at Fort Carson, Colorado (Summit, 2011) concluded the following:

"The percentage of well screen in contact with the Pierre Shale is positively correlated with the maximum concentrations of selenium in groundwater. The high degree of correlation between selenium and nitrate concentrations may point toward a common source and underscores the oxidative nature of nitrate as a release mechanism for the dissolution of selenium associated with shale deposits. Qualitative and quantitative data analysis indicate a naturally occurring source (Pierre Shale) for relatively high selenium concentrations in Fort Carson's compliance monitoring wells."

As discussed above, Fort Carson borders Clear Spring Ranch to the West.

The documented presence of elevated selenium in Pierre Shale bedrock and the documented potential for selenium to be mobilized into groundwater in the presence of nitrate supports the conclusion that the selenium detected at SC-10 is not related to the CCR Landfill and is instead a function of background influences. Calculations to derive background concentrations for CCR Landfill Assessment monitoring of selenium do not currently include groundwater samples collected from monitoring wells located hydraulically upgradient of wells SC-10 and SC-11.

3-9

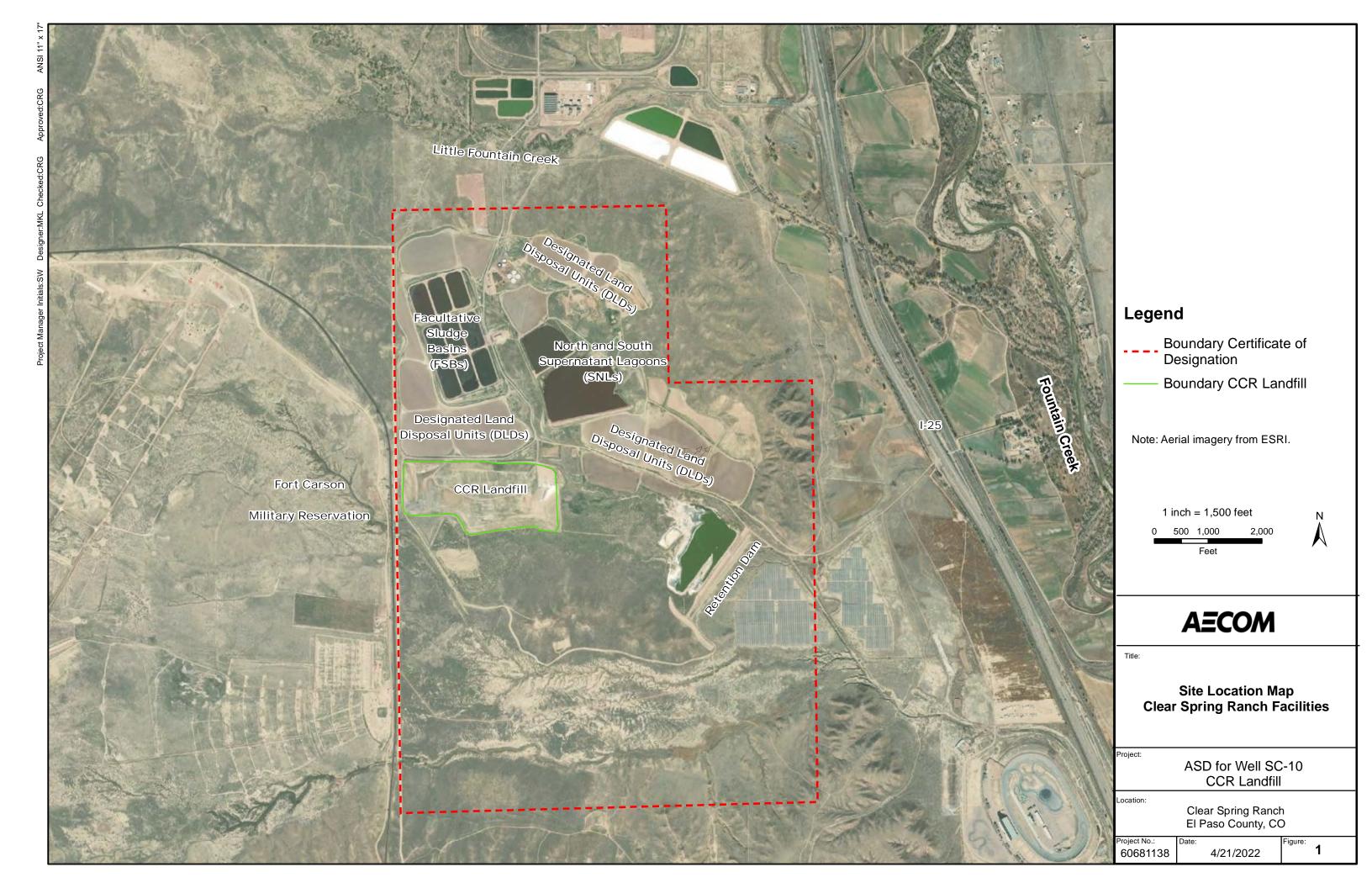
4 Conclusions

The lines of evidence supporting an ASD for the elevated selenium concentration and SSL in samples from well SC-10 are:

- Groundwater flow within the PCA HSU beneath the CCR Landfill is present within two hydraulically-separate buried paleo-alluvial valley drainages, a North Paleo-Alluvial Valley and a South Paleo-Alluvial Valley. The paleo-alluvial valleys are separated by a bedrock high located beneath the west-central region of the landfill. Groundwater in the North and South Paleo-Alluvial Valleys is entirely separated by the geologic structure down the valleys until groundwater encounters the retention dam and slurry wall.
- 2. Groundwater chemistry is significantly different in the North Paleo-Alluvial Valley as compared to the South Paleo-Alluvial Valley. Groundwater samples used to calculate background or upgradient concentrations of Appendix III and Appendix IV constituents are *all* obtained from monitoring wells completed within the PCA HSU in the South Paleo-Alluvial Valley. Background concentrations for Appendix IV constituents are applied to downgradient monitoring wells located in both the South and North Paleo-Alluvial Valleys. However, groundwater chemistry upgradient of the north side of the CCR Landfill is significantly different than the chemistry of groundwater flowing in the South Paleo-Alluvial Valley.
- 3. Nitrate concentrations in groundwater samples from monitoring wells located in the North Paleo-Alluvial Valley are significantly higher than samples obtained from wells located in the South Paleo-Alluvial Valley. Concentrations of selenium are correspondingly significantly higher in wells located in the North Paleo-Alluvial Valley than wells located in the South Paleo-Alluvial Valley.
- 4. Laboratory column studies and field studies described in the literature in areas where Cretaceous marine shales (Pierre and Mancos) are present have shown that the presence of elevated concentrations of nitrate in groundwater can maintain oxidizing conditions sufficient to mobilize and transport selenium despite low dissolved oxygen concentrations. Selenium is naturally occurring in the Pierre Shale and likely within clayey alluvial sediments derived from the Pierre Shale in the Clear Spring Ranch region.
- 5. Boron concentrations in groundwater initially triggered the move from Detection to Assessment monitoring at the CCR Landfill. The concentration of boron in well SC-10, the well triggering the SSL for selenium, is one-half to one-third of the concentration of boron that triggered Assessment monitoring and remains below the upper predictive limit for background, suggesting that the selenium is unrelated to the landfill.

These lines of evidence support the determination that the elevated concentrations of selenium in well SC-10 are due to background conditions and are not related to the presence or operation of the CCR Landfill.

4-1


5 Limitations

The signature of Consultant's authorized representative on this document represents that, to the best of Consultant's knowledge, information, and belief in the exercise of its professional judgment, it is Consultant's professional opinion that the aforementioned information is accurate as of the date of such signature. Any opinion or decisions by Consultant are made on the basis of Consultant's experience, qualifications, and professional judgment and are not to be construed as warranties or guaranties. In addition, opinions relating to environmental, geologic, and geotechnical conditions or other estimates are based on available data, and actual conditions may vary from those encountered at the times and locations where data are obtained, despite the use of due care.

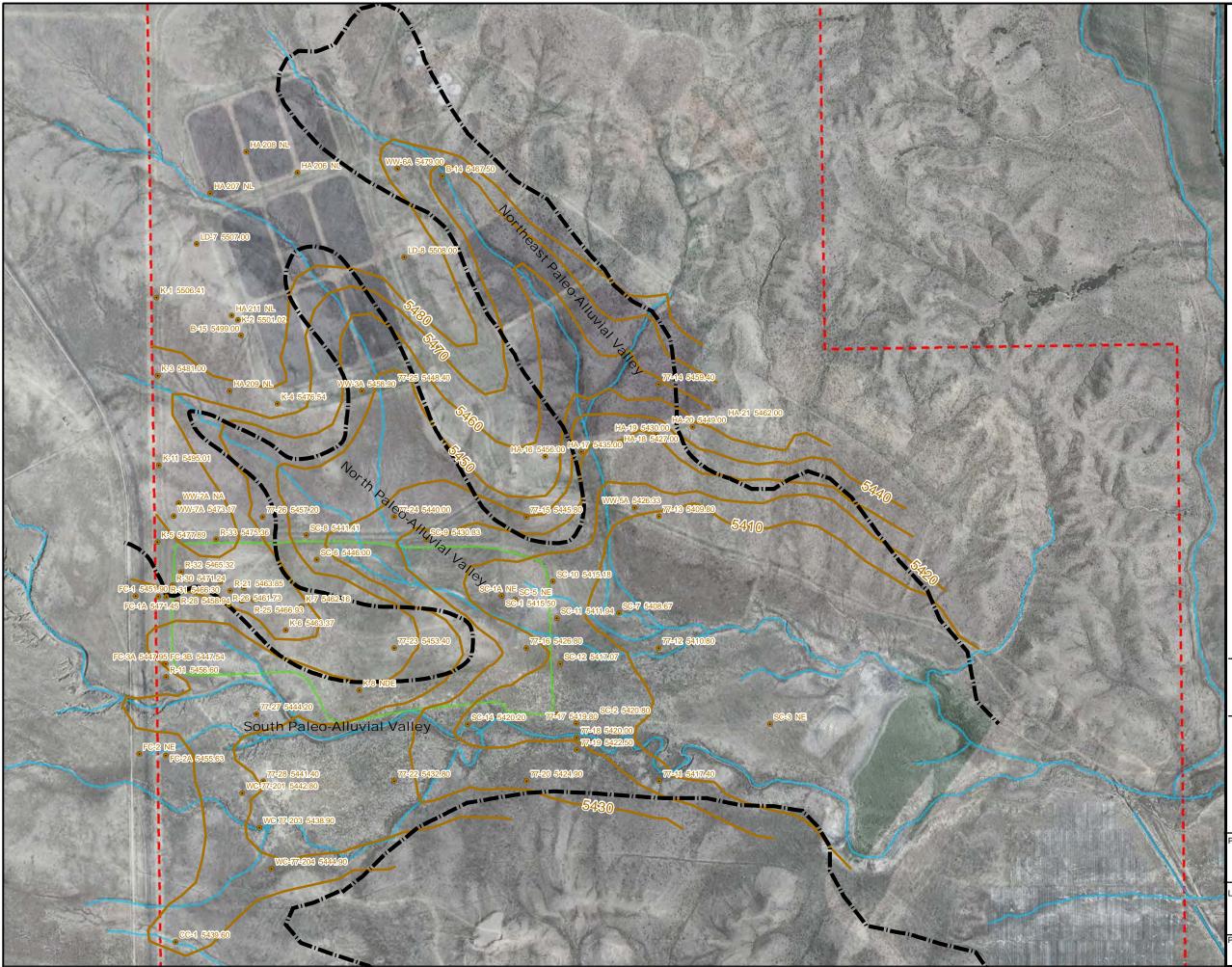
6 References

- AECOM, 2017. Coal Combustion Residuals Landfill Groundwater Detection Monitoring Plan, Clear Spring Ranch, El Paso County, Colorado. Revision 0. October 2017.
- Bailey, R.T., Hunter, W.J., and Gates, T.K. 2012. The Influence of Nitrate on Selenium in Irrigated Agricultural Groundwater Systems. Journal of Environmental Quality. Vol. 41. Pages 783-792.
- Colorado Springs Utilities, 2021. Annual Groundwater Monitoring Report for 2020. Colorado Springs Utilities' Clear Spring Ranch Coal Combustion Residuals Landfill, El Paso County, Colorado. January 29, 2021.
- Gates, T.K., B.M. Cody, J.P. Donnelly, A.W. Herting, R.T. Bailey, and J. Mueller Price. 2009. Assessing selenium contamination in the irrigated stream-aquifer system of the Arkansas River, Colorado. J. Environ. Qual. 38:2344–2356.
- MacStat Consulting, 2022. Statistical Analysis Report for CSU Clear Spring Ranch. 2021 CCR Program, Annual Update, Ash Landfill Network. January 25, 2022.
- Masscheleyn, P.H., R.D. Delaune, and J.W.H. Patrick. 1990. Transformations of selenium as affected by sediment oxidation-reduction potential and pH. Environ. Sci. Technol. 24:91–96.
- Mills, T.J, A. Mast, J. Thomas, K. Gabrielle. 2016. Controls on selenium distribution and mobilization in an irrigated shallow groundwater system underlain by Mancos Shale, Uncompany River Basin, Colorado, USA. Science of The Total Environment Volumes 566–567. Pages 1621-1631.
- Scott, G.R., R.B. Taylor, R.C. Epis, and R.A. Wobus. 1978. Geologic Map of the Pueblo 1° x 2° Quadrangle, South-Central Colorado. U.S. Geological Survey Miscellaneous Investigations Series Map I-1022, 1:250,000 Scale.
- Summit Technical Resources, 2011. Final Site Wide Selenium Study, Occurrence and Distribution of Selenium in Groundwater, Fort Carson, Colorado. Prepared for U.S. Army Corps of Engineers. November 2011.
- U.S. Environmental Protection Agency, 2009. Statistical Guidance of Groundwater Monitoring Data at RCRA Facilities Unified Guidance. Office of Resource Conservation and Recovery. March. EPA 530-R-09-007. 884 pp.
- U.S. Geological Survey, 2013. Buttes, Colorado 7.5-Minute Series Topographic Quadrangle Map. 1:24,000 scale.

FIGURES

Legend HSU ♦ Well in PCA HSU + Well in Kp HSU Boundary CCR Landfill --- Boundary Certificate of Designation Ν 1 inch = 500 feet 250 500 1,000 Feet Note: . ΑΞϹΟΜ

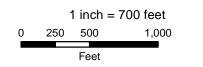
Title:


CCR Landfill Monitoring Well Location Map

Project:

ASD for Well SC-10 CCR Landfill

Location:

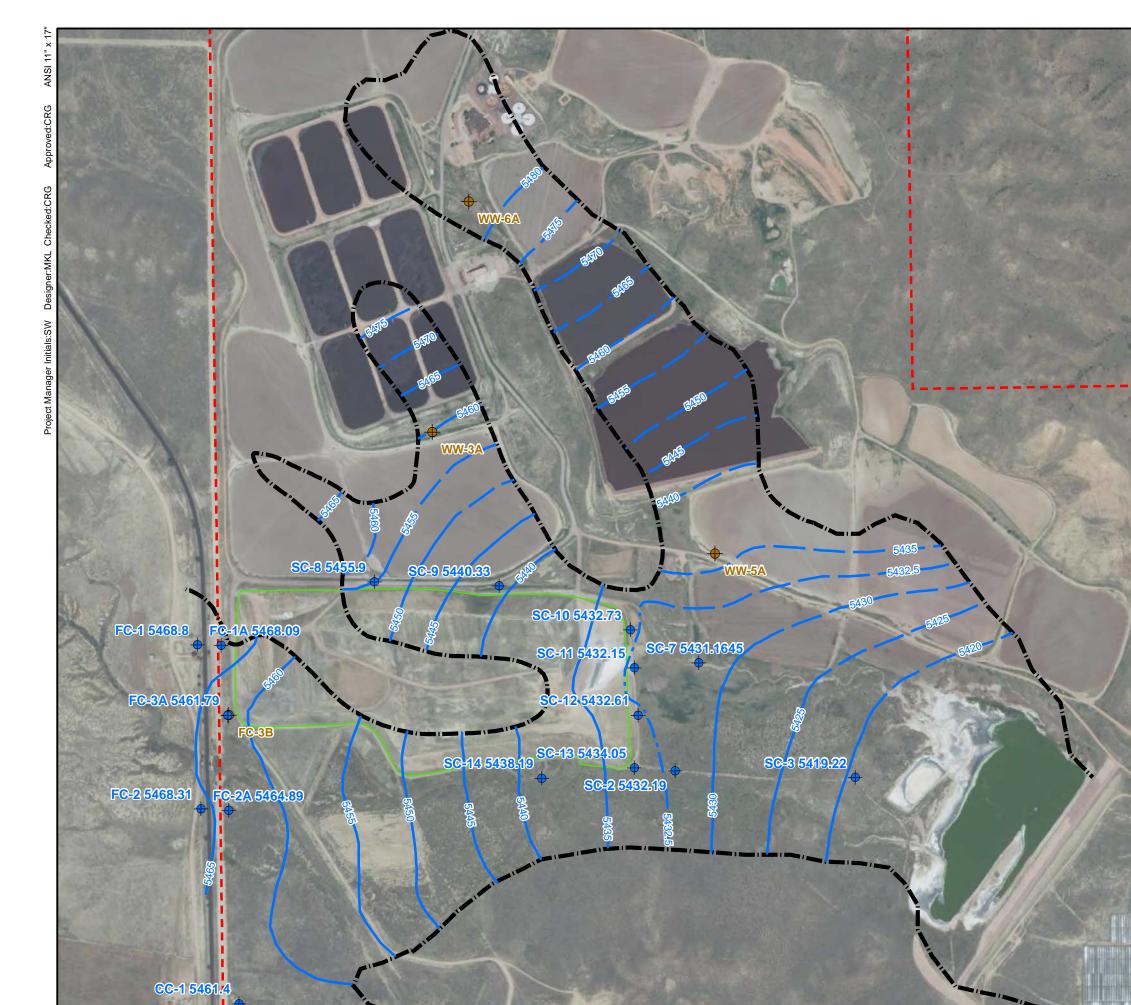

Project No.:	Date:	Figure:
60681138	4/21/2022	2

Legend

- Borehole Top of Bedrock Elevation
- Top of Shale Bedrock (10-ft Interval)
- Boundary Piney Creek Alluvium HSU, Approximate
- NHDFlowline +Additions
- Boundary Certificate of Designation
- Boundary CCR Landfill

Note: bedrock elevations derived from existing historical borhole logs. Supplemented with NHD Contours from historic USGS topographic map of Butte Quadrangle. Supplemented with NHD Flowlines and additional drainage discretization from 1947 aerial imagery.

Title:


Top of Pierre Shale Bedrock Structure Contour Map

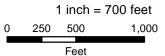
Project:	

ASD for Well SC-10 CCR Landfill

Location:

roject No.:	Date:	Figure:
60681138	4/21/2022	3

Legend

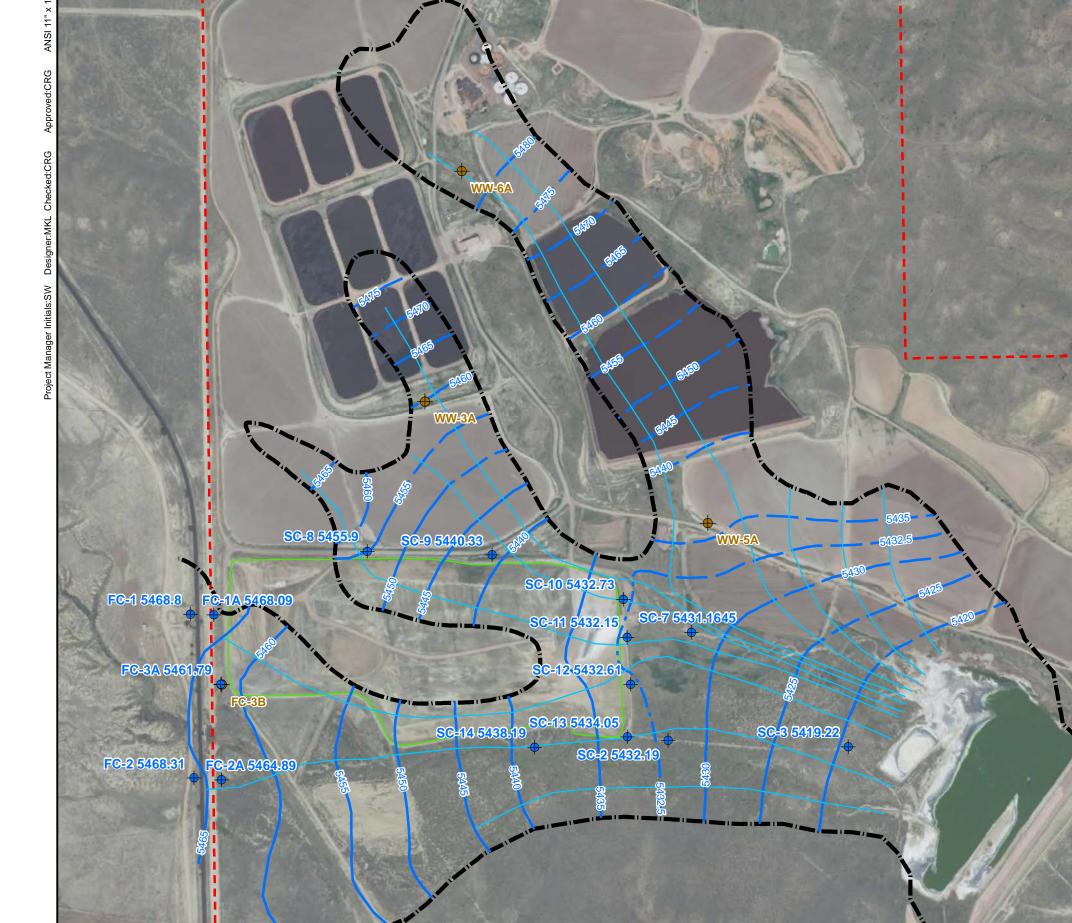

HSU

- + Well in PCA HSU
- + Well in Kp HSU

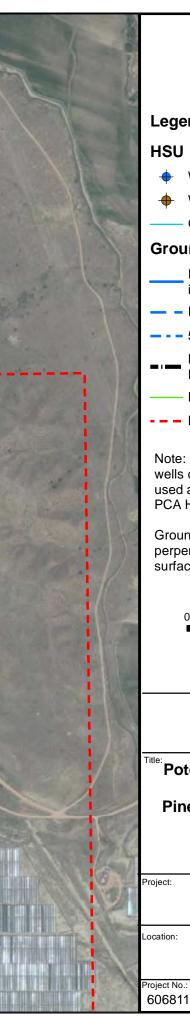
Groundwater Elevation - Feb 2022

- Potentiometric Surface Contour (5-ft interval)
- – Dashed Where Inferred
- **— - -** 5432.5 Contour (half-interval)
- Boundary Piney Creek Alluvium HSU Approximate
- - Boundary Certificate of Designation
 - Boundary CCR Landfill

Note: Groundwater elevations at monitoring wells completed predominantly in the Kp HSU used as general guidance for construction of PCA HSU elevation contours

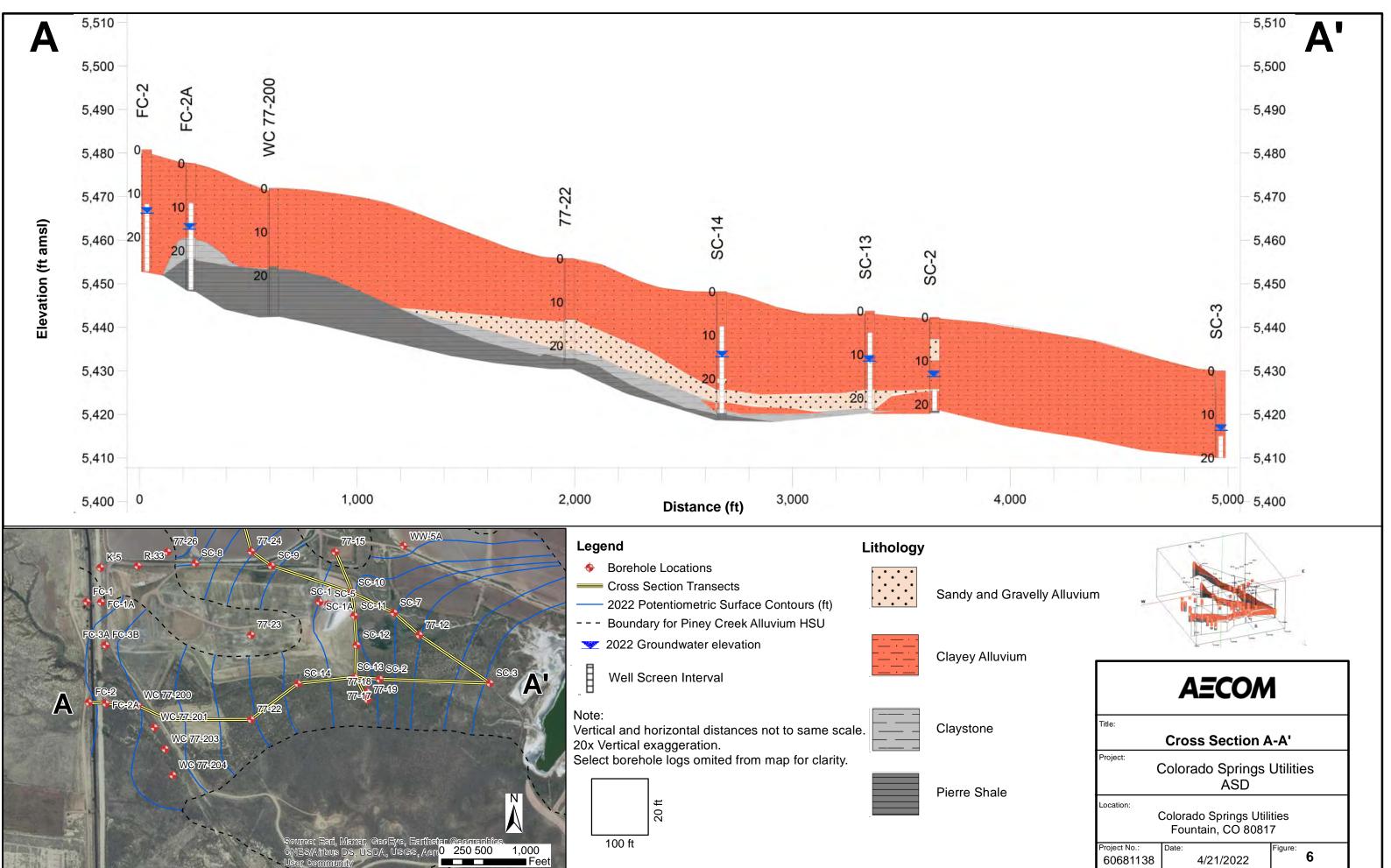


Potentiometric Surface Map Piney Creek Alluvium HSU Wells

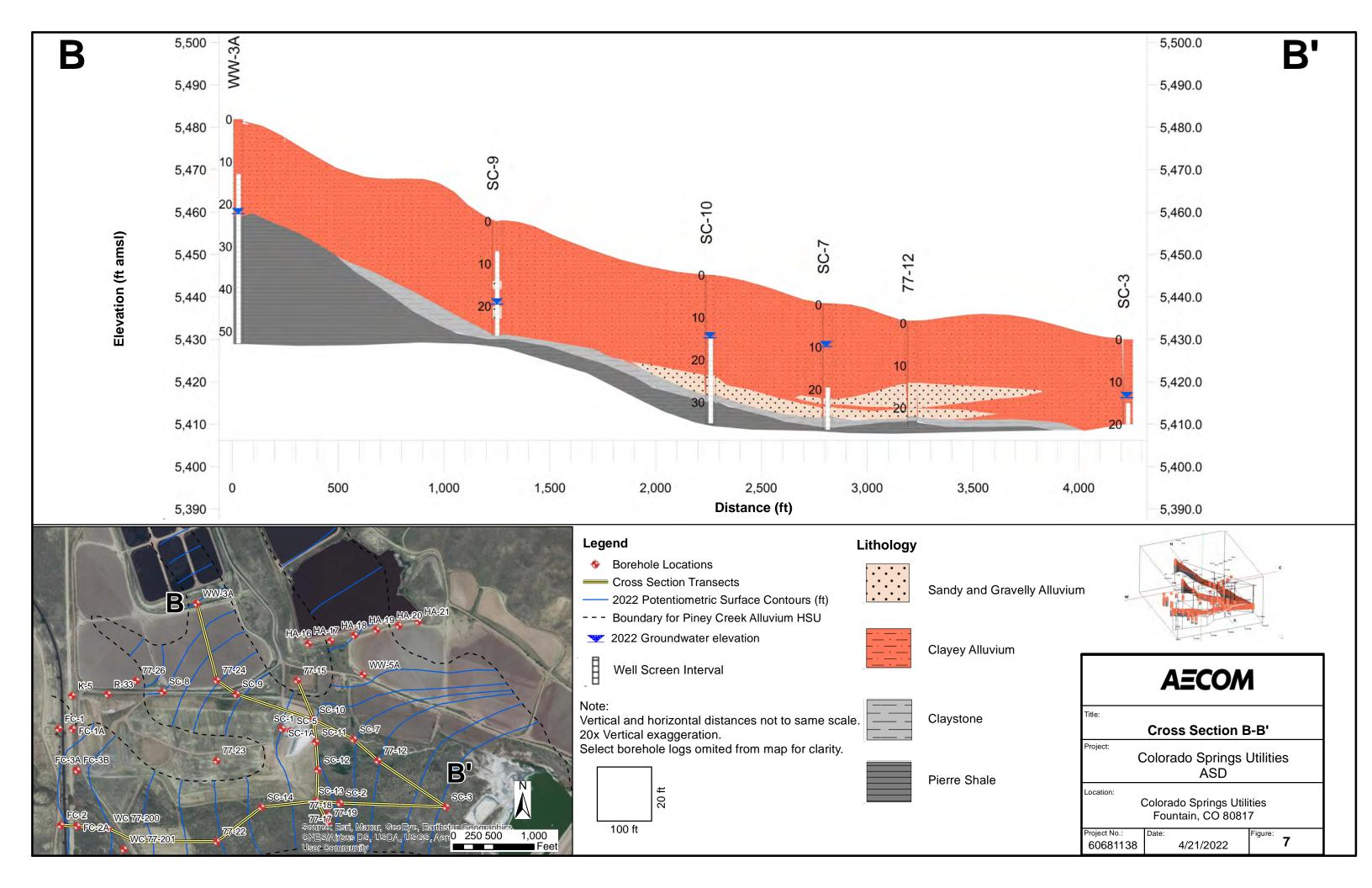

> Depth to Water Measured February 8 and 9, 2022

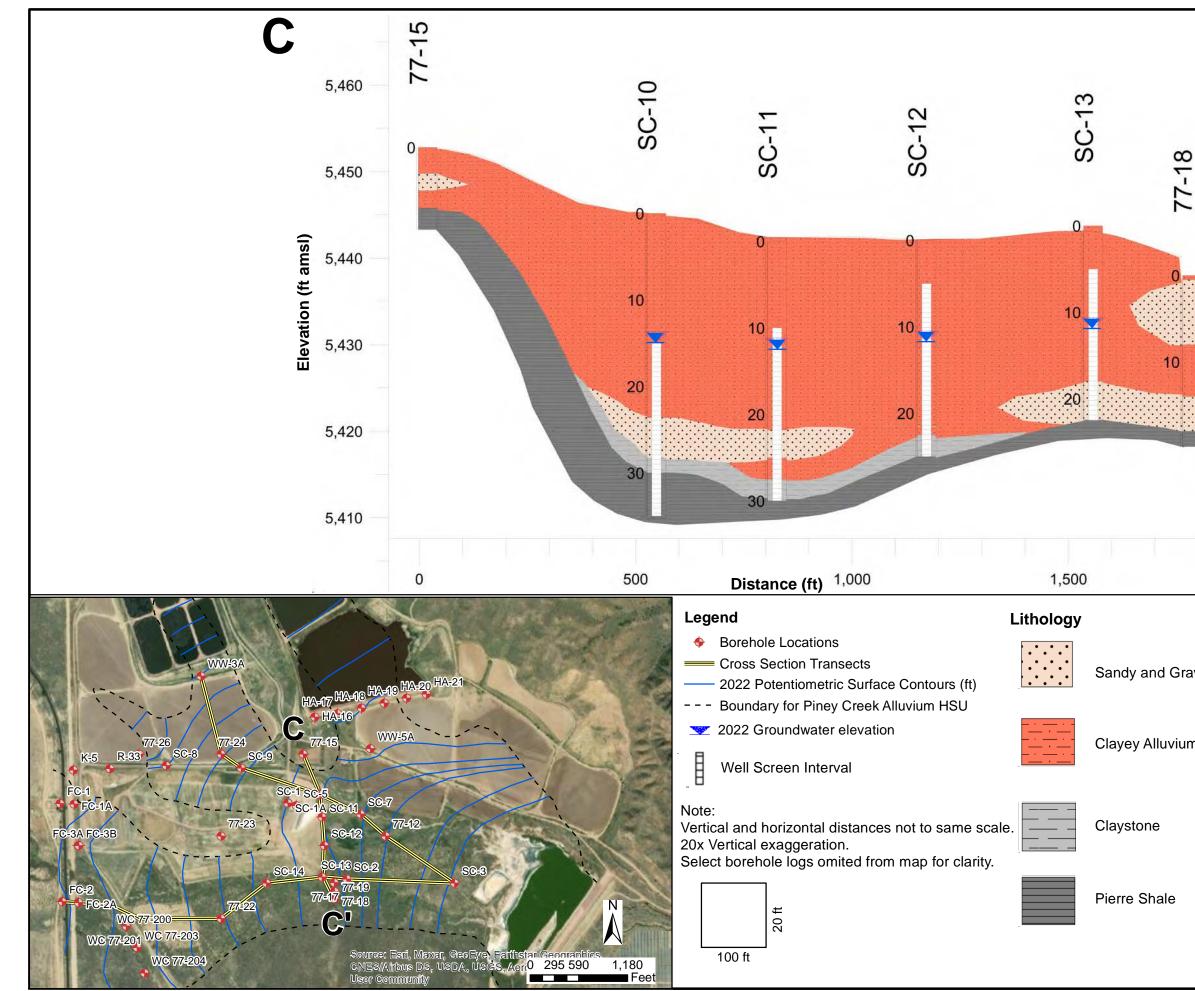
> > ASD for Well SC-10 CCR Landfill

Project No.:	Date:	Figure:
60681138	4/21/2022	4


CC-1 5461.4

Legend • Well in PCA HSU + Well in Kp HSU Groundwater Flow Line **Groundwater Elevation - Feb 2022** Potentiometric Surface Contour (5-ft interval) — – Dashed Where Inferred Boundary - Piney Creek Alluvium HSU Boundary CCR Landfill - - - Boundary Certificate of Designation Note: Groundwater elevations at monitoring wells completed predominantly in the Kp HSU used as general guidance for construction of PCA HSU elevation contours Ν Groundwater flow lines are drawn perpendicular to potentiometric surface contours. 1 inch = 700 feet 250 500 1,000 0 Feet AECOM Title: Potentiometric Surface Map and Groundwater Flow Lines Piney Creek Alluvium HSU Wells Depth to Water Measured February 8 and 9, 2022

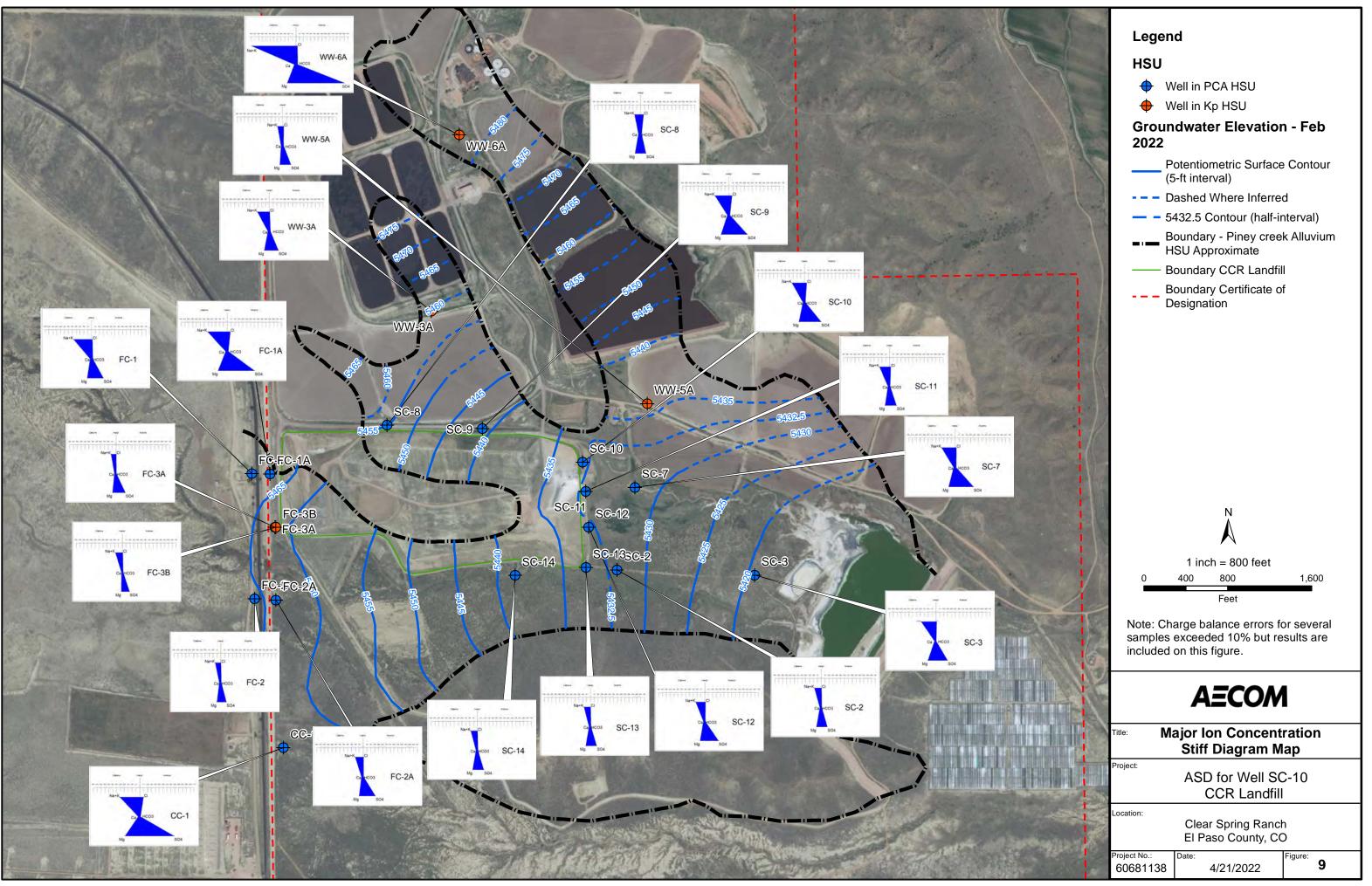

ASD for Well SC-10 CCR Landfill

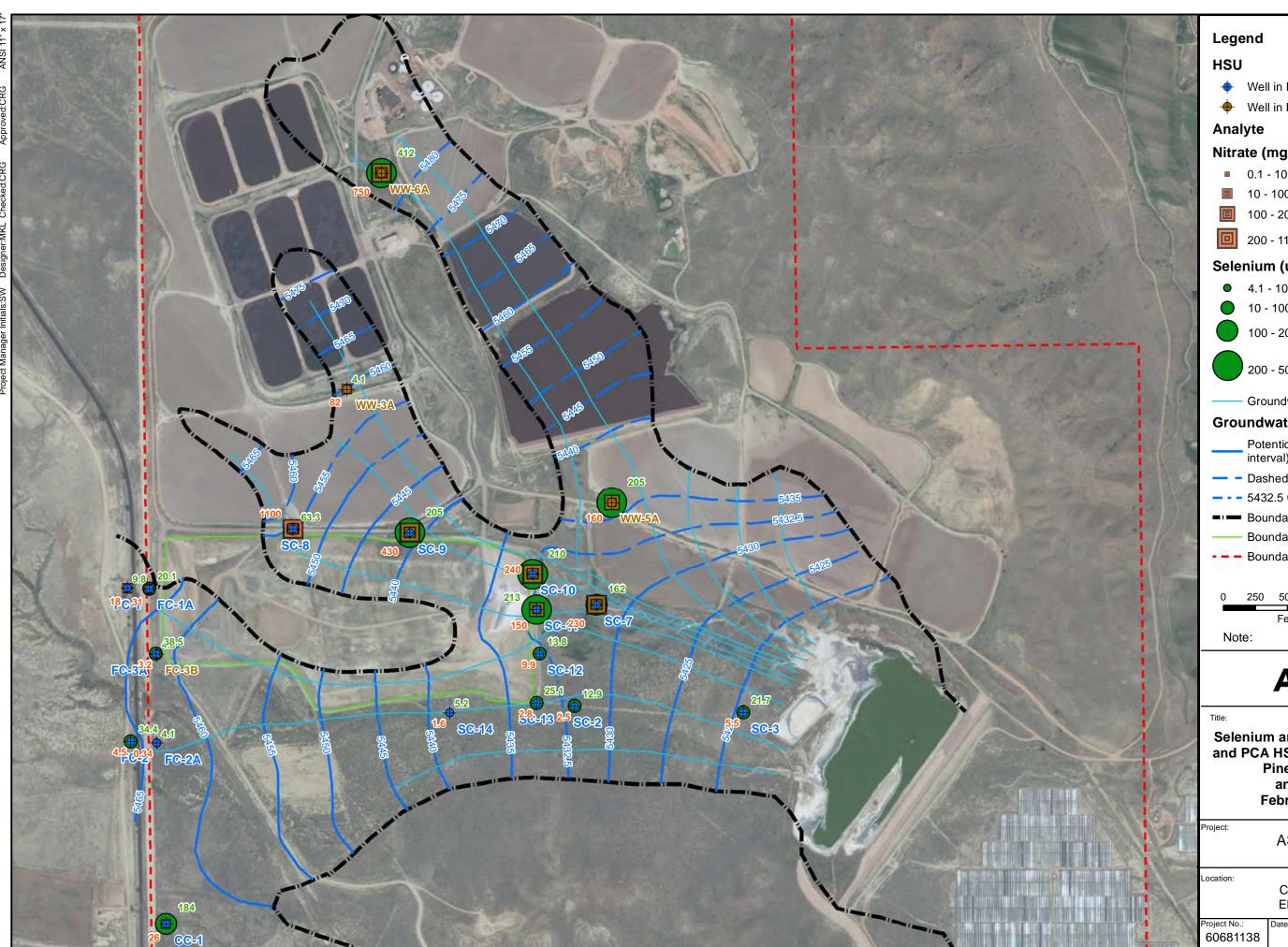

Project No.:	Date:	Figure:
60681138	4/21/2022	5

Cross Section A-A'
Colorado Springs Utilities

roject No.:	Date:	Figure:
60681138	4/21/2022	6

	5,460	C'	
1	5,450		
	5,440		
	5,430		
	5,420		
	5,410		
ĺ		N	
avelly	Alluvium	W W	
n	Title:	AECOM	

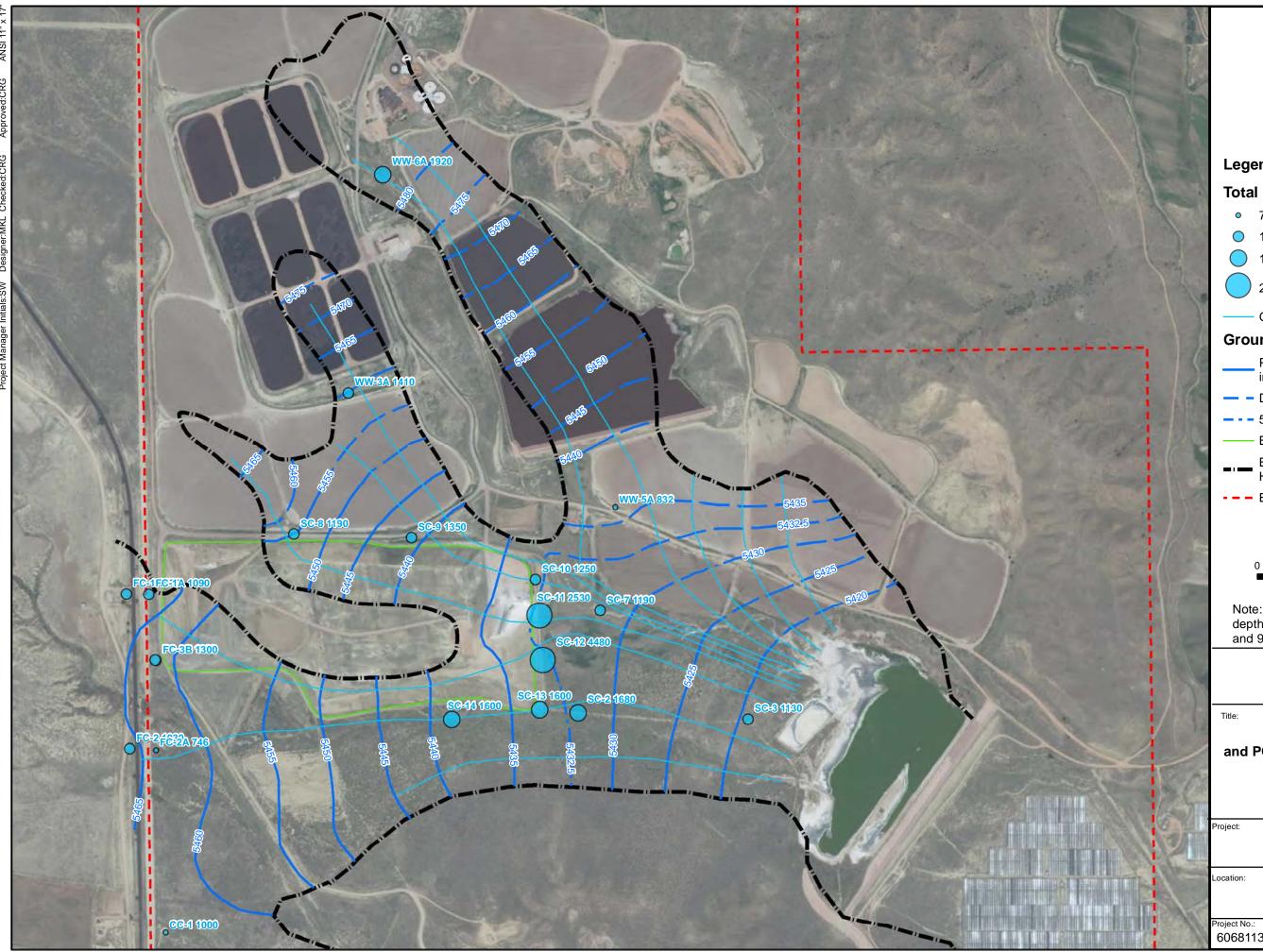

Cross	Section	C-C'


Colorado Springs Utilities ASD

Location:		
	Colorado Springs Utilities	
	Fountain, CO 80817	
	,	

Project No.: Date: 60681138 4/21/2022

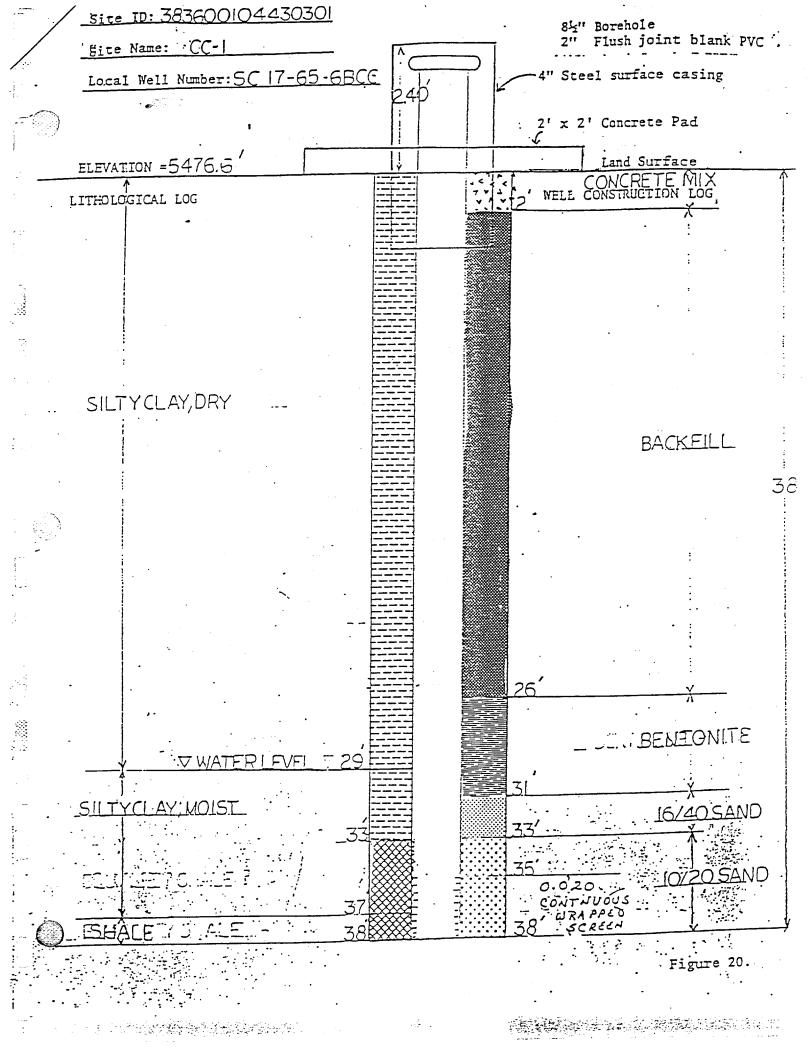
Project

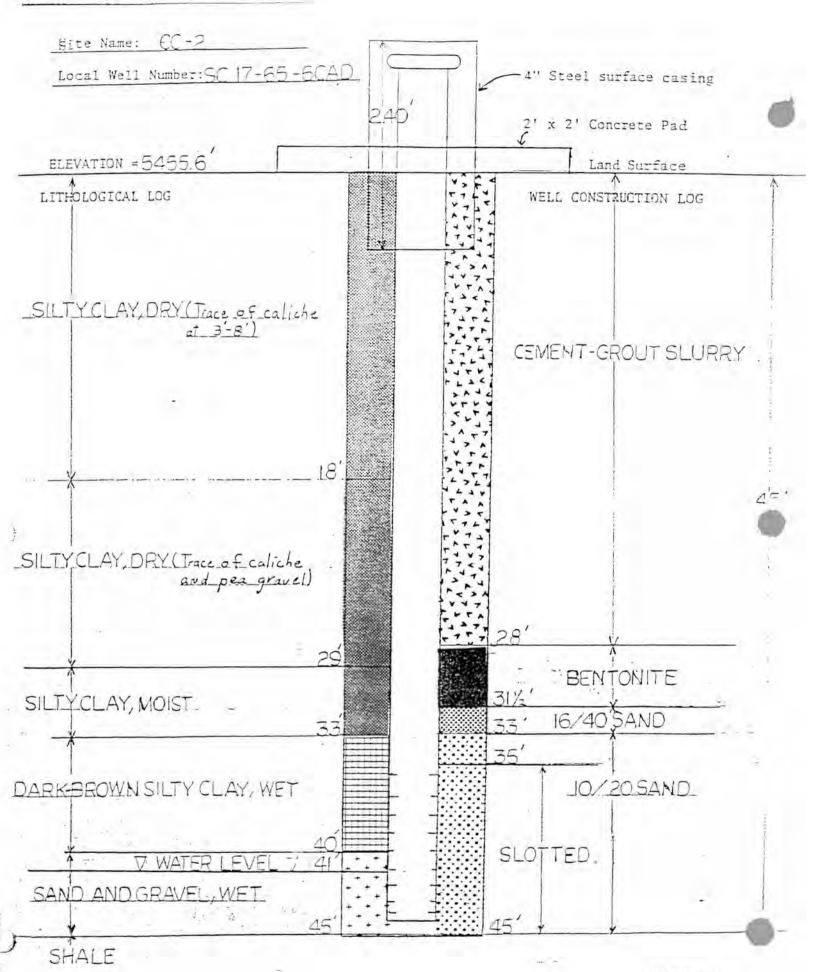


Lege	end
HSU	
+	Well in PCA HSU
\blacklozenge	Well in Kp HSU
Anal	yte
Nitra	te (mg/L)
	0.1 - 10
	100 - 200
	200 - 1100
Sele	nium (ug/L)
•	4.1 - 10.0
ightarrow	10 - 100
	100 - 200
	200 - 500
	Groundwater Flow Line
Grou	Indwater Elevation - Feb 2022
	Potentiometric Surface Contour (5-ft interval)
	Dashed Where Inferred
	5432.5 Contour (half-interval)
	Boundary - Piney Creek Alluvium HSU
	Boundary CCR Landfill
	Boundary Certificate of Designation
0 Note	250 500 1,000 Feet e: 1 inch = 700 feet
	AECOM
	nium and Nitrate Concentrations PCA HSU Potentiometric Surface Piney Creek Alluvium and Kp HSU Wells February 8 and 9, 2022
oject:	ASD for Well SC-10 CCR Landfill
cation:	

Clear Spring Ranch El Paso County, CO

oject No.:	Date:	Figure:
60681138	4/21/2022	10




Legend Total Boron (ug/L) • 746 - 1000 0 1000 - 1500 1500 - 2000 2000 - 4500 Groundwater Flow Line **Groundwater Elevation - Feb 2022** Potentiometric Surface Contour (5-ft interval) Dashed Where Inferred - 5432.5 Contour (half-interval) Boundary CCR Landfill Boundary - Piney Creek Alluvium - - - Boundary Certificate of Designation 1 inch = 700 feet Ν 250 500 1,000 Feet Note: Groundwater elevations from depth to water measured February 8 and 9, 2022. AECOM **Boron Concentrations** and PCA HSU Potentiometric Surface Piney Creek Alluvium and Kp HSU Wells February 8 and 9, 2022 ASD for Well SC-10 CCR Landfill

Clear Spring Ranch El Paso County, CO

roject No.:	Date:	Figure:
60681138	4/21/2022	11

Appendix A CCR Landfill Monitoring Well Completion Logs

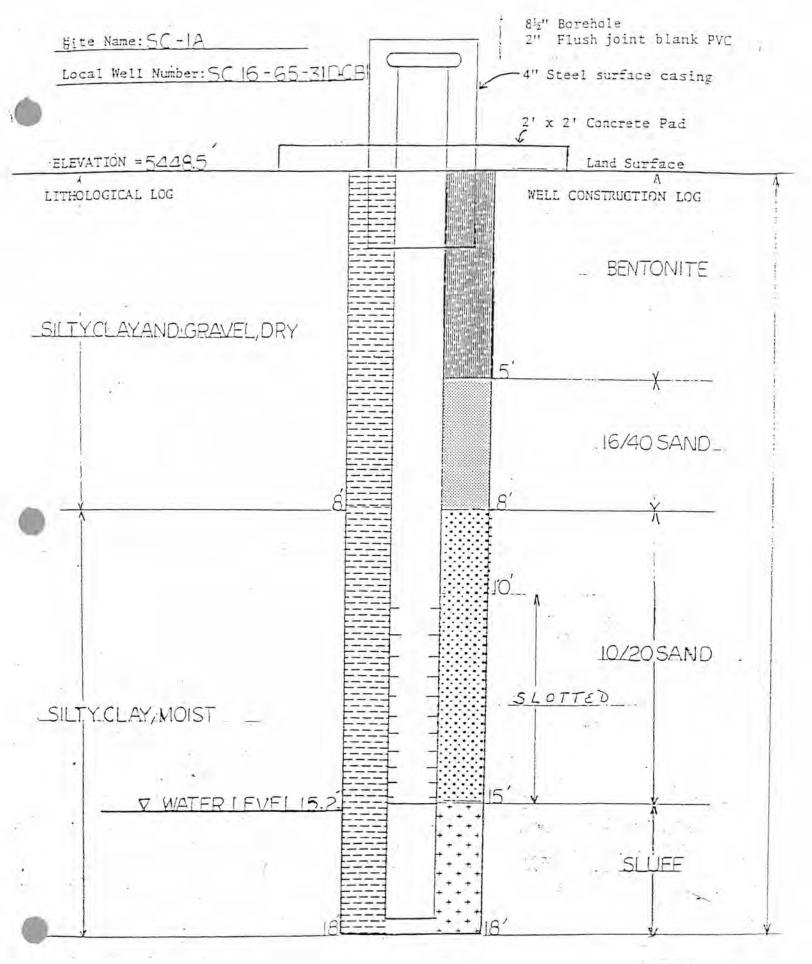
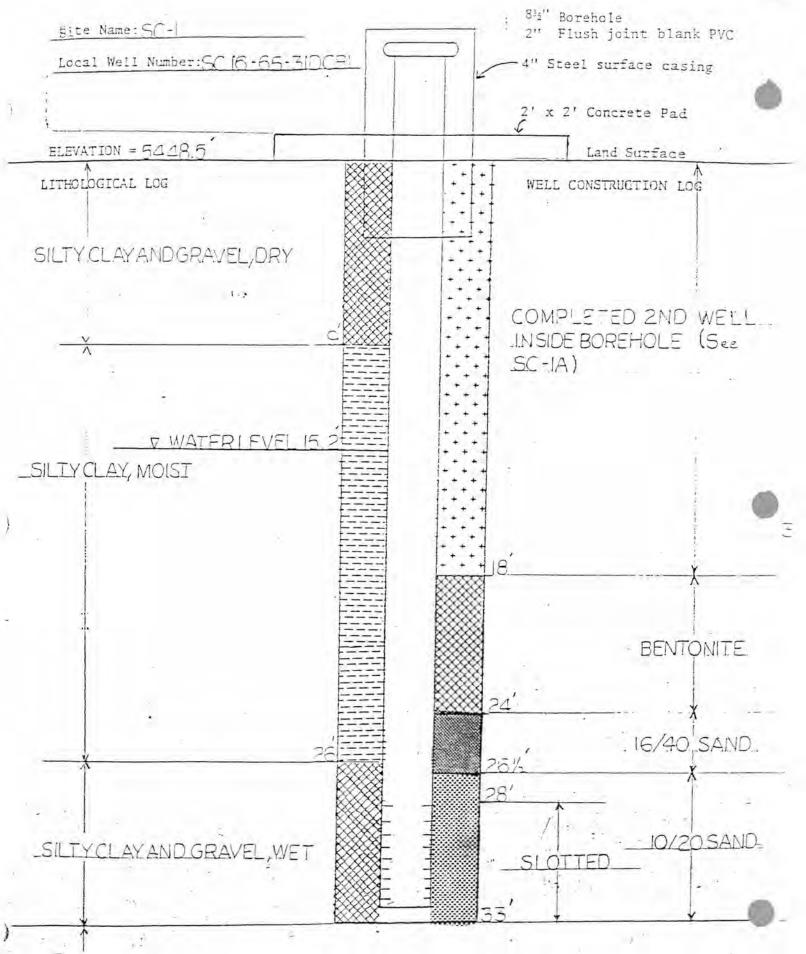



Figure 4.

-7-

_2 -

SHALE

Figure 5.

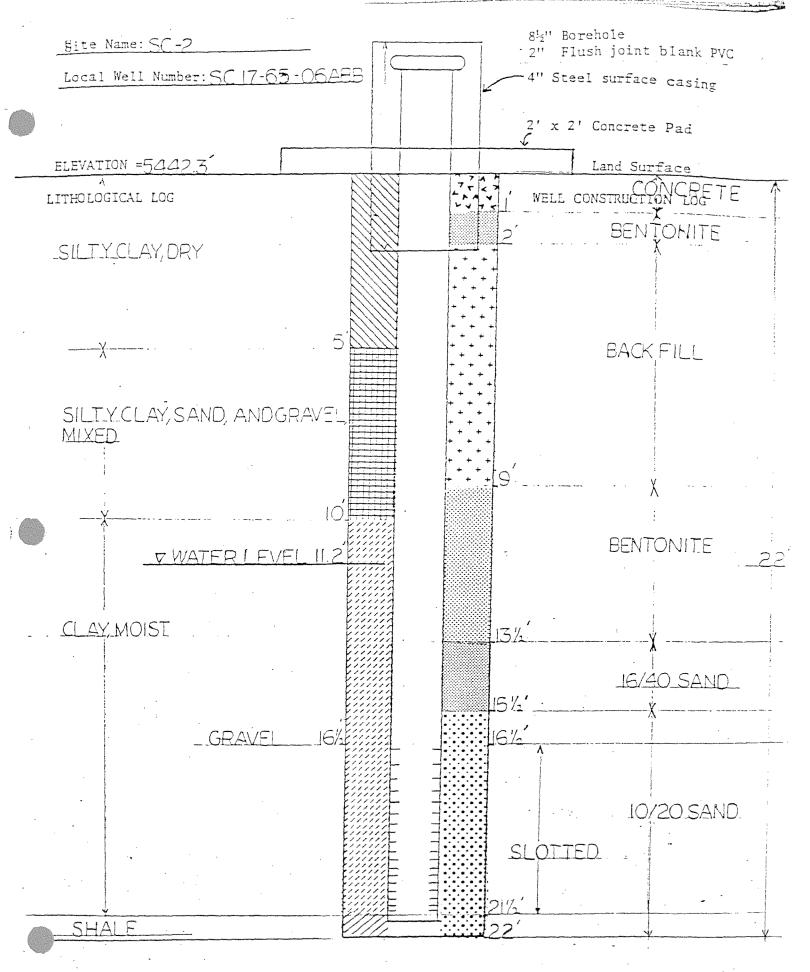


Figure 6.

-9-

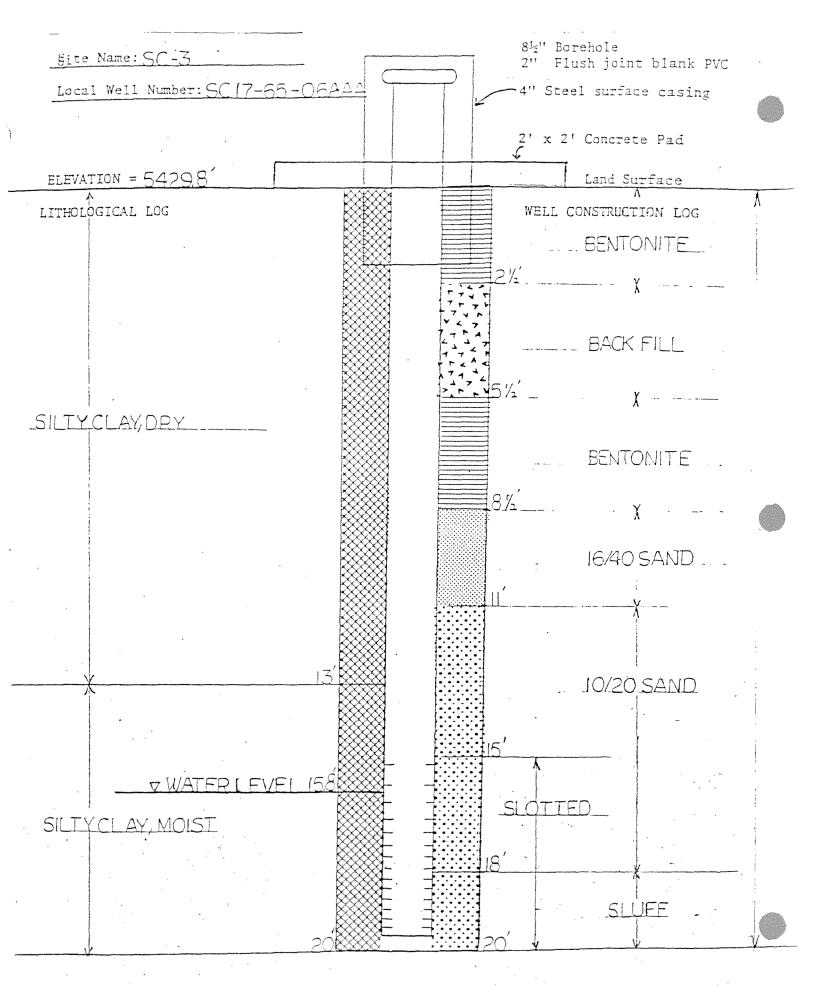
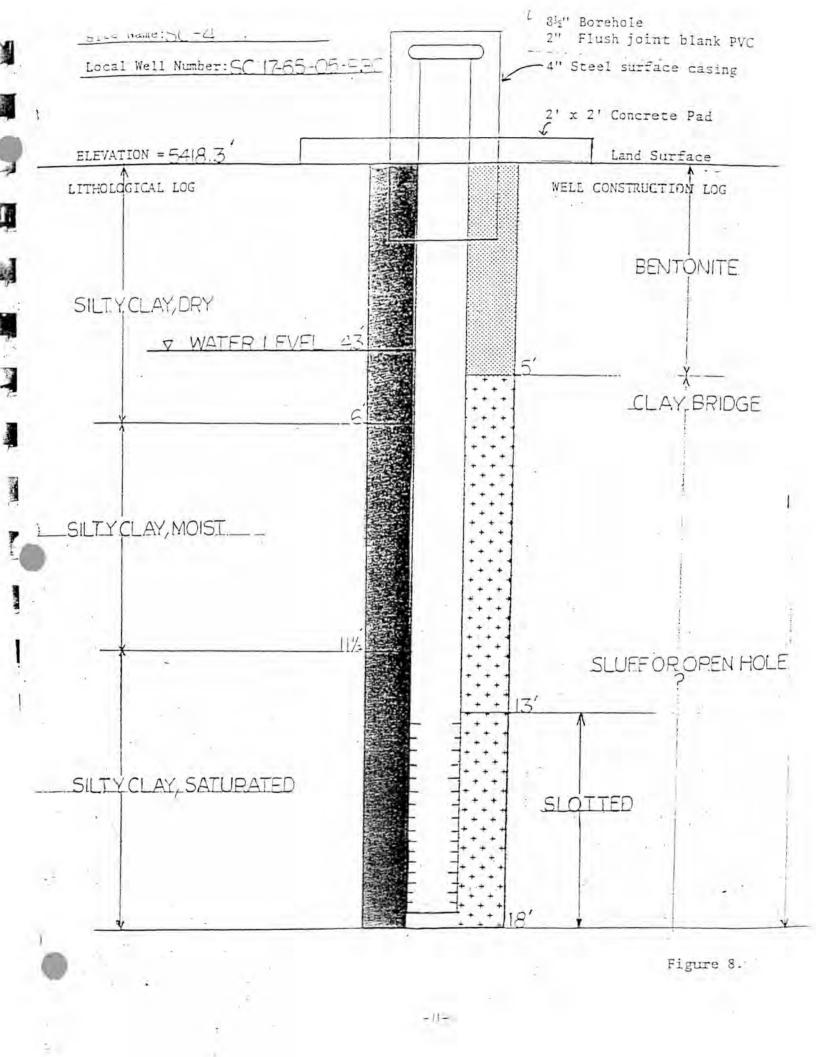



Figure 7.

PROJECT #: 09959105

PROJECT NAME: Clear Spring Ranch

ADDRESS:

CITY / STATE: Fountain, Colorado

RESOURCE GEOSCIENCE, INC.

3740 Wabash Street Colorado Springs, Colorado

WELL # SC-5

	_	SUBSURFACE PROFILE						
Depth	Lithology	Description	Number	Type	PID Reading	Blow Counts	Lab Number	WELL DETAIL
		GROUND SURFACE						
0		SANDY CLAY low density, low moisture, low cohesion, low to moderate plasticity, dark brown						
		CLAY low density, moderate to high moisture, moderate cohesion, moderate to high plasticity, dark brown						
 15 		CLAY low density, high moisture to saturated, moderate to high cohesion, moderate to high plasticity, dark brown						
20		CLAY low density, saturated, high cohesion, high plasticity, tan to grey						
		CLAY moderate density, saturated, high cohesion, high plasticity, tan to grey.						
35	*	END OF BORING						
Strati rock t	tication types. I	lines represent approximate boundary lines between soil and n-situ, the transition may be gradual.						
	ENGIN DRIL LL MET	ATE: 9/5/07 EER: Darrell Robbins LER: RGI HOD: HSA = Hollow Stem Auger SIZE: 8"	G DEPTH 1 GROUND	WATER ELI	EVATION: WATER: 10'			

	PROJECT NO	17229	LOG OF	TEST	BORII	١G	SC-	6	SHE	ET 1 OF 2
	DRILLING EQUIPMENT CME 55	(w/ AUTOHAMN	PROJECT NAME (ER) NIXON ASH PIT				LOCA	TION SEE	TEST	BORING PLAN
6	TYPE OF BIT	, 700 LIN	HAMMER DATA: WT. 140 LBS.	DROP 30 IN	LLC VA	TIGN N	/A	TOTAL OF HO	DEPTH DLE	35'
	STARTED	-,,	DRILLING AGENCY SPECTRUM		GROUNDWA' DEPTH	TER	19'	DAT	TE	DRILLING
	U COMPLET	FED: 5/30/02	LOCGED BY W. BARREIRE				20'		5	/31/02
		<u> </u>	GRASS/WEEDS/BRUSH				20.5'			5/6/02
	O DEPTH (FEET) SYMBOL		LOG OF MATERIAL			BLOW COUNTS	MOISTURE CONTENT (%)	DRY DENSITY (PCF)	SAMPLE TYPE WELL	NOTES
	$\begin{array}{c} 2 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	= $CLAY (CL to TO WET, OLI $ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	CH), MEDIUM STIFF TO STIFF VE-BROWN WITH GRAY FRAGM	, VERY MOI Ents.	IST 1 IST,	47 15 2				AND NUTE CONCRETE
	FN: LOGS	KLE	INFELDER COLO	15 LIST DRIVE. CRADO SPRINGS	UNIT 115 5, CO 80919		FIC	GURE N	NC.:	8-15

PROJECT NO.	17229	LOG	OF	TEST	BORII	NG	SC-	6	s	HEET 2 OF 2
DRILLING EQUIPMENT		PROJECT NAME					LOCAT	ION SEE	TES	T BORING N PLAN
CME 55 (w	/ AUTOHAMMER)	NIXON ASH HAMMER DATA: WT. 14		DRCP 30 IN	CHES SURF	ACE N	 /A	TOTAL OF HC	DEP	
TYPE OF BIT		LING AGENCY SPEC			GROUNDWA		19'			AT DRILLIN
	5/ 30/ 02	GED BY W. BARR			DEPTH		20'			5/31/02
COMPLETED:	SUR	FACE CONDITIONS			CAVED		20.5'			6/6/02
BACKFILLED:	GR.	ASS/WEEDS/BRUS	i-1						TYPE	
DEPTH (FEET) SYMBOL		LCG OF MATER	RIAL			BLOW COUNTS	MOISTURE CONTENT (%)	DRY DENSITY (PCF)	SAMPLE T	NOTES
-30 31 32	CLAYSTONE, HI BLOCKY, OLIVE	GHLY WEATHERED. —BROWN.	VERY	STIFF, VER	(MOIST,	15			E	
33 34	<u>BEDROCK</u> CLAYSTONE, M OLIVE-BROWN.	DDERATELY WEATHE	ERED, H	HARD, MOIS	Τ,	50/10				
35— ^{1984,824,44} 36—	TOTAL DEPTH:	35'								
37								the surface of the su		
38—										
39										
40										
41-										
42-										
43										
44										
45										
47										
48										
49-										
50										
51-								Province and a second se		
52									Andrewski and a second	
53-								-		
54-										
55						and a second sec				
56-										
57-										
58										
59				ande site for the design of the left strength of the strength		**************************************				
-60	KLE	INFELDER		4815 UST COLORADO 5	ORIVE, UNIT PRINGS, CO 8	115 30919		FIGUR	ΞŅ	NC.: <u>B-16</u>

LEGEND OF SYMBOLS USED ON BORING LOGS

LOG SYMBOLS

BULK / GRAB SAMPLE

MODIFIED CALIFORNIA SAMPLER (2.5 inch inside diameter)

STANDARD PENETRATION SPLIT SPOON SAMPLER (2.0-inch O.D. X 1.4-inch I.D.)

SHELBY TUBE (3 inch outside diameter)

BDBGM SIZE CORE BARREL (1.65-inch I.D.)

NX SIZE CORE BARREL (1.875-inch I.D.)

HQ-3 SIZE CORE BARREL (2.4-inch I.D.)

WATER LEVEL (level where first encountered)

 $\frac{1}{2}$ WATER LEVEL (level after completion)

GENERAL NOTES

- 1. Lines separating strata on the logs represent approximate boundaries only. Actual transitions may be gradual.
- No warranty is provided as to the continuity of soil or rock conditions between individual sample locations.
- Logs represent general soil or rock conditions observed at the point of exploration on the date indicated.
- 4. In general, Unified Soil Classification designations presented on the logs were based on visual classification in the field and were modified where appropriate by visual classifications in the office, and/or laboratory gradation and index property testing.
- 5. NV = No Value; NA = Not Analyzed; NP = No Plasticity
- 6. Exp = percent expansion under defined surcharge pressure.
- 7. Com = Percent compression under defined surcharge pressure.
- 50/X indicates number of blows required to drive the identified sampler X inches with a 140 lb hammer falling 30 inches.

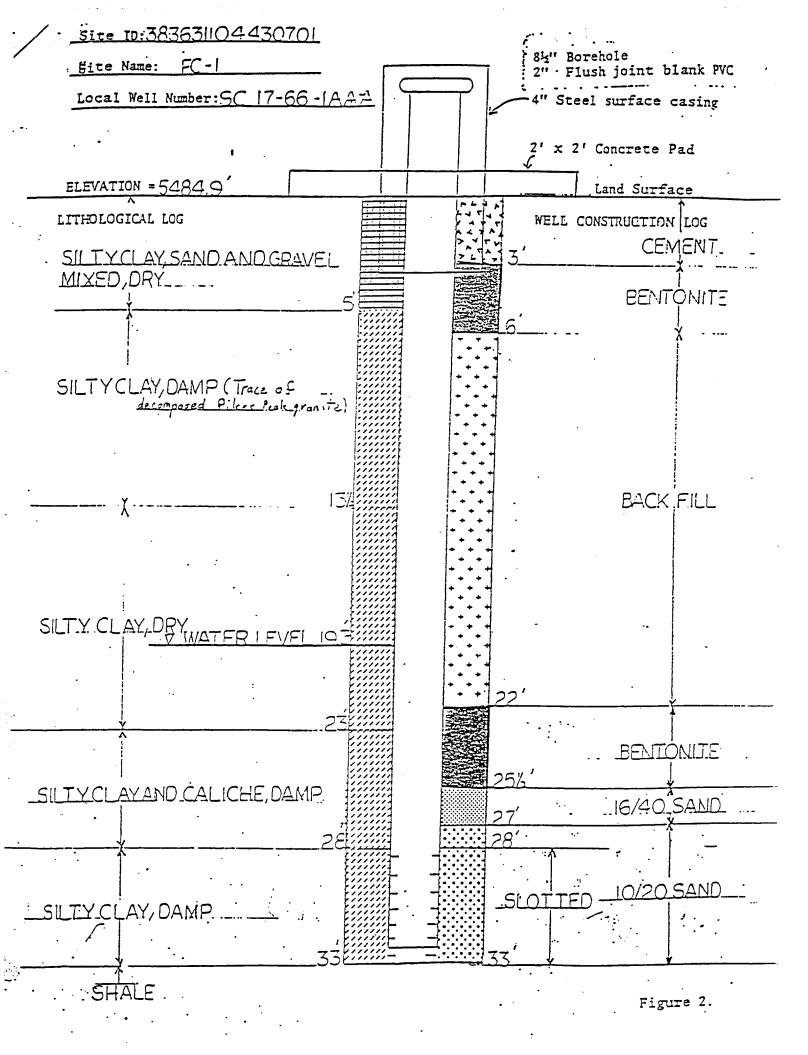
	JSCS MBOL	SOIL DESCRIPTIONS
	GW	WELL-GRADED GRAVELS, GRAVEL-SAND MIXTURES WITH LITTLE OR NO FINES
	GP	POORLY-GRADED GRAVELS, GRAVEL-SAND MIXTURES WITH LITTLE OR NO FINES
	GM	SILTY GRAVELS, GRAVEL-SILT-SAND MIXTURES
	GC	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES
	SW	WELL-GRADED SANDS, SAND-GRAVEL MIXTURES WITH LITTLE OR NO FINES
	SP	POORLY-GRADED SANDS, SAND-GRAVEL MIXTURES WITH LITTLE OR NO FINES
	SM	SILTY SANDS, SAND-GRAVEL-SILT MIXTURES
	SC	CLAYEY SANDS, SAND-GRAVEL-CLAY MIXTURES
	ML	INORGANIC SILTS & VERY FINE SANDS, SILTY OR CLAYEY FINE SANDS, CLAYEY SILTS WITH SLIGHT PLASTICITY
	CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
	OL	ORGANIC SILTS & ORGANIC SILTY CLAYS OF LOW PLASTICITY
	MH	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILT
	СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
		CLAYSTONE
		SHALE
		SANDSTONE
		LIMESTONE
		FILL
Nate	· Eine anele	ad soils that plot within the batched area on the Plasticity Chart

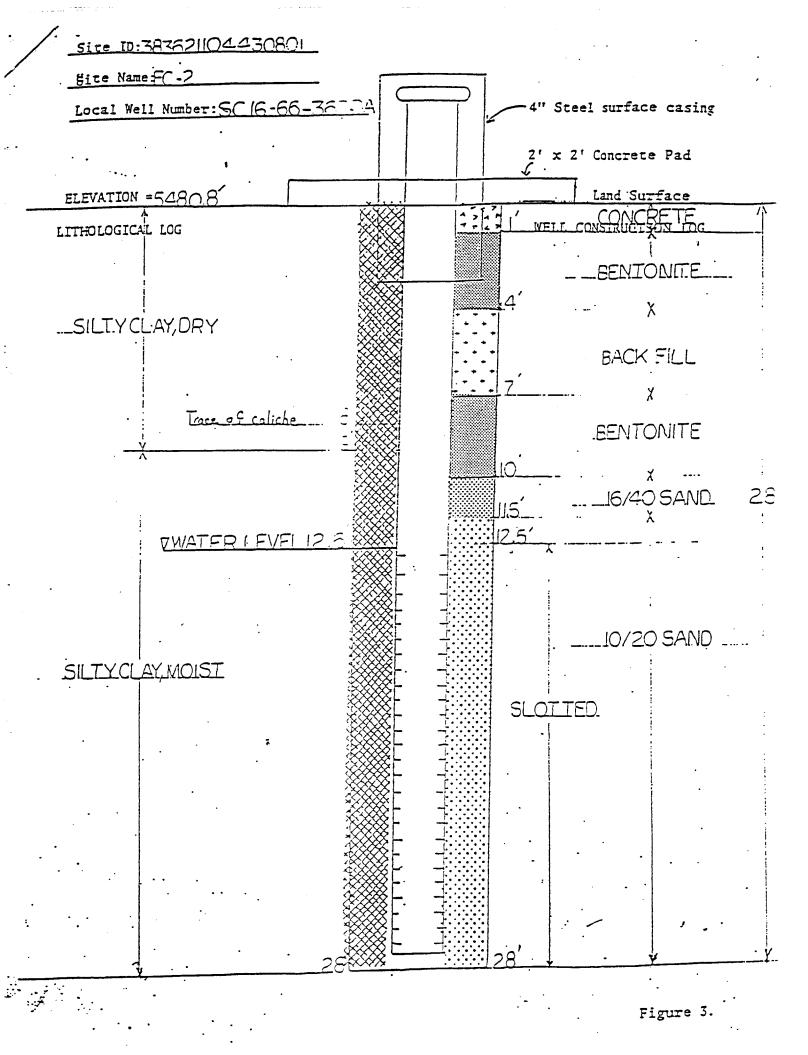
Note: Fine grained soils that plot within the hatched area on the Plasticity Chart, and coarse grained soils with between 5% and 12% passing the No. 200 sieve require dual USCS symbols, ie., GW-GM, GP-GM, GW-GC, GP-GC, GC-GM, SW-SM, SP-SM, SW-SC, SP-SC, SC-SM.

KLEINFELD Bright People. Right S	
Drafted By: B. Mustain	Project Number:
Date: December, 2008	100208

BORING LOG LEGEND

CSU - Clear Spring Ranch Ash Landfill Southwest of Interstate 25 and Ray Nixon Road Colorado Springs, Colorado


00208_CSU-ASH LANDFILL.GPJ 12/17/2008


Copyright Kleinfelder, Inc. 2008

Locatio Ground			See Boring Location Plan Date Started: 12/8/200 Initial (=): 22.0 feet while drilling. Date Completed: 12/8/200																
Drilling		·	Custom Auger	Equipment:		CME	.55		Lo	gged E	Bv:		Β. Μ ι	ustain					
Auger D	-		4"	Drilling Met			Stem A	uger		00		-							
-	ammer Type: Cathead												·						
										ORY									
			DESCRIPTIO	N			-		1										
Elevation (feet) Deoth (feet)	Do			•	Sample Interval	s la	9		6			dex		Passing #200 Sieve (%)	Well/Piezometer Construction				
Elevation (fe Depth (feet)	Graphical Log				Inte	ount	Sample Type) g	t (%	Liquid Limit	Plasticity Index	و ه	j leve	ezol				
vati oth (aphic	S	urface Condition: Gras	s & Weeds	nple	0.1 0	nple	USCS SYMBOL	lsity	istur	l bir	stici	Siev	ssing 0 Si	il/Pi nstri	Notes			
De Ee	U U				Sar	Blow Counts per 6" Interval		NSU SY1	Dry Density (pcf)	Moisture Content (%)	Liq	Pla	Passing #4 Sieve (%)	Pas #20	ŠS				
1		Sandy	CLAY (CL), medium to htly moist to moist, find	o dark brown,		1 .5	SPT		`							Bentonite			
2.	<i>\////</i>	Silgi	nuy moist to moist, ime	e-graineu, iirm.		7 11										-			
	¥////					6 8	SPT									-			
3.						11 12						-				-			
4						2 4	SPT									-			
5-						57										-			
6.					\square	6 6	SPT	1											
7						6										-			
8 -						<u>5</u> 1	SPT									-			
9-						2 3													
10-						<u>4</u> 3	SPT												
11 -						3 5										_			
12 -						<u>4</u> 6	SPT												
13 -						8 8	0.1									_			
14 -						<u>10</u> 5	SPT									-			
15-					M	6	951									-			
16 -						7 9	0.77									-			
17 -						10 9	SPT									-			
18 -						10 10										-			
10 . 19 -						5 6	SPT									10/20 - Sand			
20-						10 13					ĺ			į.					
-						20 16	SPT							ŀ	[目:]	0.01"			
21 -		V				24									:目:				
22 -			y, Slightly Silty SAND			12 18	SPT								目	-1			
23 -			vn, wet, medium dense			88				1					目:	-1			
24 -		Sandy (med	CLAY (CL) with occasi ium brown, very moist	ional gravel, t. firm.	\mathbf{n}	9	SPT							÷	目:				
25-			y, Slightly Silty SAND			10 13									目	 -			
26 -		brow	/n/olive-brown, wet, m	edium dense.		<u>10</u> 12	SPT					1			:目:	-			
27 -		Claysto hard	ne, olive-brown, moist	, hard to very		26 37				ĺ					目:				
28 -		naiu	. ,			34 50/5"	SPT							i.	·目:	-			
29 -			· · · · · · · · · · · · · · · · · · ·		5	0/6"50/1"	SPT								三三				
30 -			Bredrock (Pierre Shal																
31 -			gray, moist, very harc ing Well Installed	1.												-			
32 -		monitori	and then motulied													-			
33 -			1	Boring terminate	d at s	approvin	nately 3	0 feet hel	ow arou	nd sur	face					-1			
34 -	•		Groun	dwater was enco	unte	red at 22	2 feet be	elow grou	nd surfa	ace du	ing d	rilling.				-			
35 -	,															· · -			
								ORIN				-			B	ORING			
(KI	EIN	FELD	DER			COLI						- de:11							
	Bright Pe	eople, Right S	olutions.					r Spring					00			~~			
Drafted By	<u>~</u>	lustain	Project Number:		องน			erstate :		•		on R	oad			SC-7			
			-			(Joiora	ido Spri	ngs, C	olora	ao								
Date: De			100208										•••••			age 1 of 1			

100208_CSU-ASH LANDFILL.GPJ 12/16/2008

Copyright Kleinfelder, I

PROJECT # 09959105

PROJECT NAME: Clear Spring Ranch

RESOURCE GEOSCIENCE, INC. 3740 Wabash Street

Colorado Springs, Colorado

ADDRESS:

MONITORING WELL # FC-1A

CITY / STATE: Fountain, Colorado

		SUBSURFACE PROFILE			SAMP	LE		
Depth	Lithology	Description	Number	Type	PID Reading	Biow Counts	Lab Number	WELL DETAIL
0- 5-	An interface of the set of the	GROUND SURFACE CLAY low density, low moisture, low cohesion, low plasticity, gray.						
		CLAY low to moderate density, moderate moisture, moderate cohesion, low to moderate plasticity, dark gray. SHALE high density, low moisture, low cohesion, low plasticity, gray						
types	DRILL D	SHALE moderate to high density, low to moderate moisture, low to moderate cohesion, low plasticity, gray SHALE high density, low moisture, low cohesion, low plasticity, gray END OF BORING ines represent approximate boundary lines between soil and rock the transition may be gradual.		COLLAR ELE				
DRI	DRIL	ER; Jonathan Whitacre ER: RGI IOD: Hollow Stem Auger IZE: 8"	DEPTH T GROUND	WATER ELE	WATER: Nor			

PROJECT # 09959105

PROJECT NAME: Clear Spring Ranch

RESOURCE GEOSCIENCE, INC. 3740 Wabash Street

Colorado Springs, Colorado

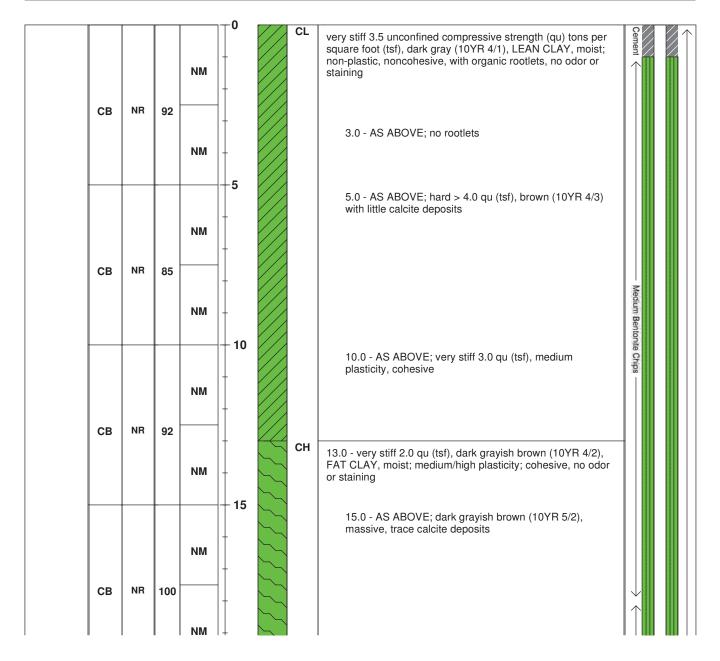
MONITORING WELL # FC-2A

ADDRESS:

CITY / STATE: Fountain, Colorado

SAMPLE SUBSURFACE PROFILE PID Reading Blow Counts Lab Number WELL Lithology DETAIL Number Description Depth Type GROUND SURFACE 0 CLAY low density, low moisture, low cohesion, low plasticity, gray. CLAY 5 low density, moderate moisture, moderate cohesion, moderate plasticity, grayish-brown. 10 CLAY low to moderate density, low to moderate moisture, low to moderate cohesion, low plasticity, grayish-brown 15 WEATHERED SHALE moderate density, low moisture, low cohesion, low plasticity, grayish-brown 20 SHALE high density, low moisture, low cohesion, low plasticity, gray 25 **END OF BORING** 30 35 Stratification lines represent approximate boundary lines between soil and rock types. In-situ, the transition may be gradual DRILL DATE: 10/05/07 COLLAR ELEVATION: **ENGINEER: Jonathan Whitacre GROUND ELEVATION:** DRILLER; RGI DEPTH TO GROUND WATER: None at 0 hrs DRILL METHOD: Hollow Stem Auger **GROUND WATER ELEVATION:** HOLE SIZE: 8" TOTAL DEPTH OF BORING: 29' bgs, 2,76' ags

Boring #:FC-3A **Boring and Well Construction Log** AECOM Sheet 1 of 2 Project: CSU Well Installation Contractor: GDI Drilling Inc. Location: Clear Springs Ranch, Fountain, CO Project #: 60506434.3 Operator: Dean & Eric Stedman Northing: 1282807.37 Easting: 3223409.73 Drill Rig Type: Diedrich D-90 Truck Mount Client: Colorado Springs Utilities Surface Elevation (ft AMSL): 5481.95 Total Depth (ft): 34.75 Start Date & Time: 6/6/2016 10:40 AM Method: Hollow Stem Auger Finish Date & Time: 6/6/2016 15:25 PM Boring ID:8.5 inches Logged By: Chris Ahrendt Sampling and Field Data Lithology USCS Symbol Depth (ft.) Well Soil and Rock Description Sample Type Blows/ 6 inch DID (mdd) Analytical % Rec Diagram Samples


Remarks and Datum Used:	Monitoring well was completed with above-grade well protection, SS =	2" Split Spoon
AECOM	Soil samples were not collected from soil boring FC-3A	Depth to Water Table (ft):
6200 South Quebec Street Greenwood Village, CO 80111	NR = Not Recorded, CB = 5' Long, 4" Diameter Core Barrel	19.12 TOIC 6/6/2016 15:07 PM
Direct: (303) 740-3916 Office: (303) 740-2600	NM = Not Measured, ft. TOIC = Feet from Top of Inner PVC Casing	

Boring #:FC-3A AECOM **Boring and Well Construction Log** Sheet 2 of 2 Contractor: GDI Drilling Inc. Project: CSU Well Installation Location: Clear Springs Ranch, Fountain, CO Project #: 60506434.3 Operator: Dean & Eric Stedman Northing: 1282807.37 Easting: 3223409.73 Client: Colorado Springs Utilities Drill Rig Type: Diedrich D-90 Truck Mount Surface Elevation (ft AMSL): 5481.95 Start Date & Time: 6/6/2016 10:40 AM Total Depth (ft): 34.75 Method: Hollow Stem Auger Finish Date & Time: 6/6/2016 15:25 PM Boring ID:8.5 inches Logged By: Chris Ahrendt Sampling and Field Data Lithology USCS Symbol Depth (ft.) Well Sample Type Soil and Rock Description Blows/ 6 inch DID (mdd) % Rec Analytical Diagram Samples

)				
				+ 20 -	<u>}</u>		20.0 - AS ABOVE; soft 0.5 qu (tsf), wet, slow dilatency		
			NM	-	\rightarrow	CL		10/20 0	2" PVC,
СВ	NR	72		-			22.0 - stiff 2.0 qu (tsf), yellowish brown, SANDY LEAN CLAY, moist/wet, slow dilatency, non-plastic, noncohesive, very fine to fine sand, alluvial	olorado	, Schedu
			NM	- 25				0/20 Colorado Silica Sand	Schedule 40, 0.010" Slotted Screen
							25.0 - AS ABOVE; little fine sand		otted Scre
			NM	+					9
СВ	NR	90	NM	- - - 30			28.2 - AS ABOVE; gray (10YR 5/1), with gravel, slight mottled gray (10YR 5/1) and brownish yellow (10YR 6/8)		
			NM	- 30			30.0 - AS ABOVE; very stiff, some calcite deposits		
СВ	NR	80	NM		HHHHH HHHHH	CLAY- STONE	32.5 - very stiff, dark gray (10YR 5/1) CLAYSTONE, moist, non-plastic, noncohesive, blocky, mottled brownish yellow and dark gray		
SS	50	9"	NM				34.0 - Core Barrel Refusal		Sand

Remarks and Datum Used:	Monitoring well was completed with above-grade well protection, SS =	2" Split Spoon
AECOM	Soil samples were not collected from soil boring FC-3A	Depth to Water Table (ft):
6200 South Quebec Street Greenwood Village, CO 80111	NR = Not Recorded, CB = 5' Long, 4" Diameter Core Barrel	19.12 TOIC 6/6/2016 15:07 PM
Direct: (303) 740-3916 Office: (303) 740-2600	NM = Not Measured, ft. TOIC = Feet from Top of Inner PVC Casing	

Boring #:FC-3B **Boring and Well Construction Log** AECOM Sheet 1 of 3 Project: CSU Well Installation Contractor: GDI Drilling Inc. Location: Clear Springs Ranch, Fountain, CO Project #: 60506434.3 Operator: Dean & Eric Stedman Northing: 1282806.09 Easting: 3223416.43 Drill Rig Type: Diedrich D-90 Truck Mount Client: Colorado Springs Utilities Surface Elevation (ft AMSL): 5481.54 Total Depth (ft): 55.1 Start Date & Time: 6/10/2016 06:45 AM Method: Hollow Stem Auger Finish Date & Time: 6/10/2016 09:50 AM Boring ID:8.5 inches Logged By: Chris Ahrendt Sampling and Field Data Lithology USCS Symbol Depth (ft.) Well Soil and Rock Description Sample Type Blows/ 6 inch DID (mdd) Analytical % Rec Diagram Samples

Remarks and Datum Used:	All information presented for 0 to 34.75 feet bgs was obtained from soi	l boring FC-3A.
AECOM	Soil samples were not collected from soil boring FC-3B	Depth to Water Table (ft):
6200 South Quebec Street Greenwood Village, CO 80111	NR = Not Recorded, CB = 5' Long, 4" Diameter Core Barrel	39.32 TOIC 6/10/16 11:39 AM
Direct: (303) 740-3916 Office: (303) 740-2600	NM = Not Measured, ft. TOIC = Feet from Top of Inner PVC Casing	

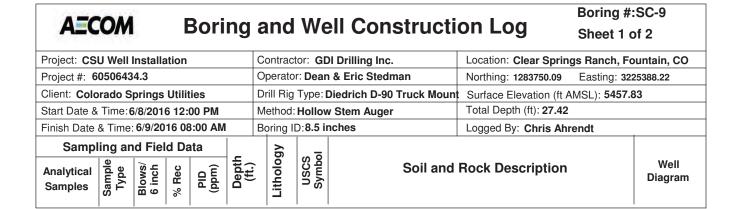
Boring #:FC-3B AECOM **Boring and Well Construction Log** Sheet 2 of 3 Contractor: GDI Drilling Inc. Project: CSU Well Installation Location: Clear Springs Ranch, Fountain, CO Project #: 60506434.3 Operator: Dean & Eric Stedman Northing: 1282806.09 Easting: 3223416.43 Client: Colorado Springs Utilities Drill Rig Type: Diedrich D-90 Truck Mount Surface Elevation (ft AMSL): 5481.54 Start Date & Time: 6/10/2016 06:45 AM Total Depth (ft): 55.1 Method: Hollow Stem Auger Finish Date & Time: 6/10/2016 09:50 AM Boring ID:8.5 inches Logged By: Chris Ahrendt Sampling and Field Data Lithology USCS Symbol Depth (ft.) Well Sample Type Soil and Rock Description Blows/ 6 inch DID (mdd) % Rec Analytical Diagram Samples

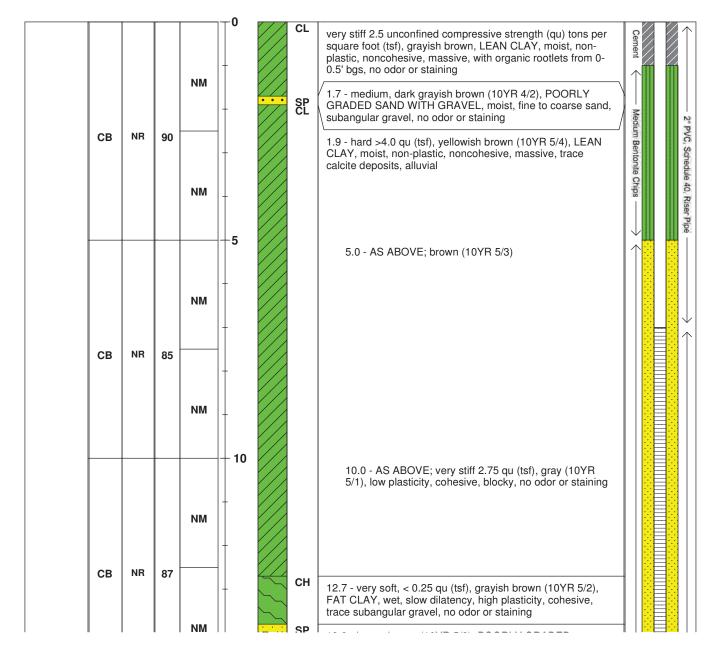
			NM	20		20.0 - AS ABOVE; soft 0.5 qu (tsf), wet, slow dilatency
СВ	NR	72	NM	- -	CL	22.0 - stiff 2.0 qu (tsf), yellowish brown, SANDY LEAN CLAY, moist/wet, slow dilatency, non-plastic, noncohesive, very fine to fine sand, alluvial
			NM	25		25.0 - AS ABOVE; little fine sand
СВ	NR	90	NM	-		28.2 - AS ABOVE; gray (10YR 5/1), with gravel, slight mottled gray (10YR 5/1) and brownish yellow (10YR 6/8)
			NM	30 -		mottled gray (10YR 5/1) and brownish yellow (10YR 6/8) 30.0 - AS ABOVE; very stiff, some calcite deposits
СВ	NR	80	NM			(34.0-34.75') very stiff, dark gray (10YR 5/1) CLAYSTONE, moist, non-plastic, noncohesive, blocky, mottled brownish yellow and dark gray
SS	50	9"	NM			34.0 - Core Barrel Refusal
				35 -		(34.75-40.0') "blind"drilled, no sampling

Remarks and Datum Used:	All information presented for 0 to 34.75 feet bgs was obtained from soi	l boring FC-3A.
AECOM	Soil samples were not collected from soil boring FC-3B	Depth to Water Table (ft):
6200 South Quebec Street Greenwood Village, CO 80111	NR = Not Recorded, CB = 5' Long, 4" Diameter Core Barrel	39.32 TOIC 6/10/16 11:39 AM
Direct: (303) 740-3916 Office: (303) 740-2600	NM = Not Measured, ft. TOIC = Feet from Top of Inner PVC Casing	

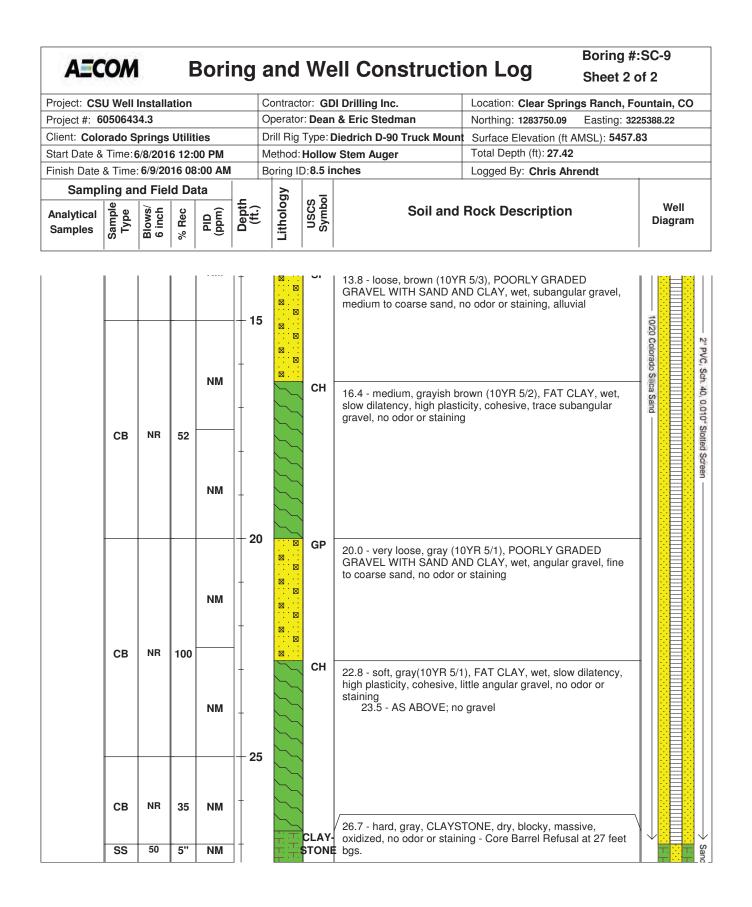
AECOM Boring and Well Construction Log

Boring #:FC-3B Sheet 3 of 3

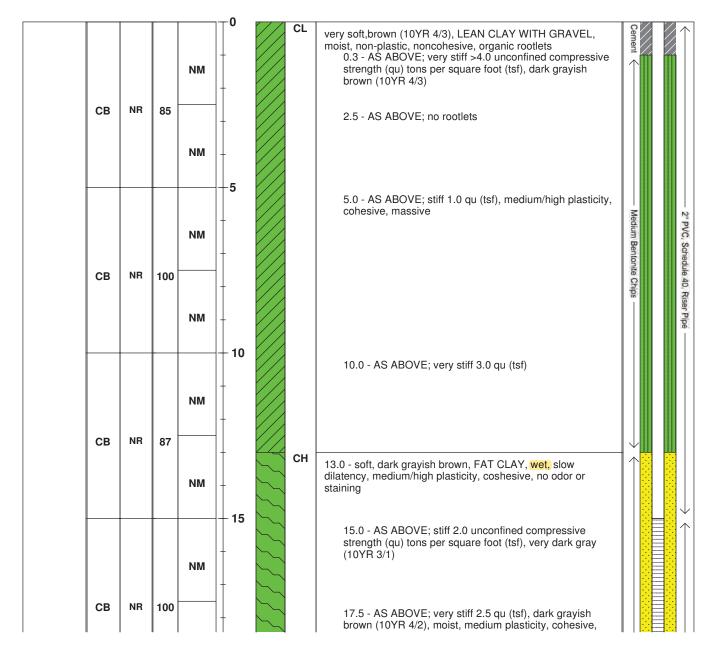

Project: CSU Well Installation	Location: Clear Springs Ranch, Fountain, CO							
Project #: 60506434.3	0	Operato	r: Dear	a & Eric Stedman	Northing: 1282806.09 Easting: 3223416.43			
Client: Colorado Springs Utilities	[Drill Rig Type: Diedrich D-90 Truck Mount Surface Elevation (ft AMSL): 5481.54				54		
Start Date & Time: 6/10/2016 06:45 AM	Ν	Method:	Hollov	v Stem Auger	Total Depth (ft): 55.1			
Finish Date & Time: 6/10/2016 09:50 AM	E	Boring ID:8.5 inches			Logged By: Chris Ahrendt			
Sampling and Field Data		gy	_					
Aualytical Type Rec Blows/ PID Plows/	Depth (ft.)	Litholo	USCS Symbol	Soil and Rock Description We Diag				


SS	50	3"	NM	40 	SHALE	40.0 - hard, bluish gray (GLEY2 5/10B), SHALE, dry, non- plastic, platy, bedded to thinly bedded. (40.26-45.0') "blind" drilled, no sampling		
SS	50	2"	NM	45 45 	SHALE	45.0 - hard, bluish gray (GLEY2 5/10B), WEATHERED SHALE, dry, non-plastc, platy, thinly bedded, with moist, dark gray, clay (45.2-50.0') "blind" drilled, no sampling	\rightarrow	↓ ↓ ↑
SS	50	0.5"	NM	- - -+ 50 -	SHALE	50.0 - hard, bluish gray (GLEY2 5/10B), WEATHERED SHALE, dry, non-plastc, platy, thinly bedded, with moist, dark gray, clay (50.4-55.0') "blind" drilled, no sampling	10/20 Colorado Silica Sand	2" PVC, Sch. 40, 0.010" Slotted Screen
SS	50	1.5"	NM	+ + - - - - 55	SHALE	55.0 - hard, bluish gray (GLEY2 5/10B), WEATHERED SHALE, dry, non-plastc, platy, thinly bedded, with moist, dark gray, clay		Sdreen

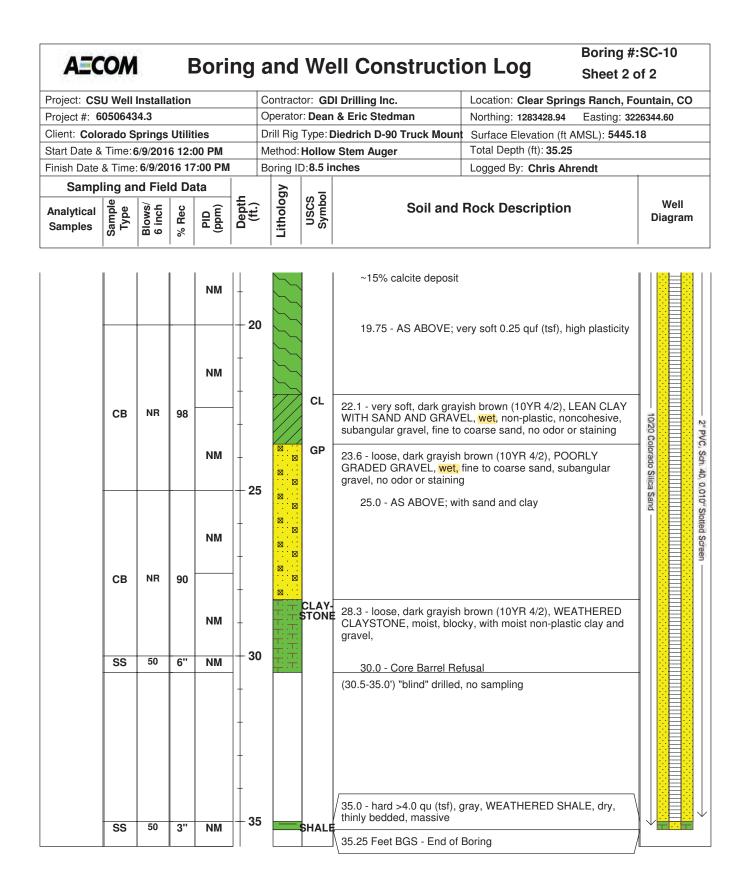
Remarks and Datum Used:	All information presented for 0 to 34.75 feet bgs was obtained from so	il boring FC-3A.
AECOM	Soil samples were not collected from soil boring FC-3B	Depth to Water Table (ft):
6200 South Quebec Street Greenwood Village, CO 80111	NR = Not Recorded, CB = 5' Long, 4" Diameter Core Barrel	39.32 TOIC 6/10/16 11:39 AM
Direct: (303) 740-3916 Office: (303) 740-2600	NM = Not Measured, ft. TOIC = Feet from Top of Inner PVC Casing	


AEC	OM	Ì,	E	Bori	ng	and	d We	ell Constructi	on Log	Boring #: Sheet 1 c		-8															
Project: CSU Well Installation				Contractor: CDI Drilling Inc			Location: Clear Springs Ranch, Fountain, CO																				
Project #: 60506434.3						Contractor: GDI Drilling Inc.			Northing: 1283779.00	Easting: 322			0														
						Operator: Dean & Eric Stedman			8	0																	
Client: Colorado Springs Utilities Start Date & Time: 6/9/2016 09:03 AM					Drill Rig Type: Diedrich D-90 Truck Mount			Surface Elevation (ft AMSL): 5461.41 Total Depth (ft): 20.92																			
Finish Date						Method: Hollow Stem Auger Boring ID:8.5 inches			Logged By: Chris Ahrendt																		
					·			lones	Logged by. Chins An																		
Sampl	-	1	1		_ ہے ا	ogy	s <u>a</u>	Calland	Deels Decemination			Well															
Aualytical Sample Samples Sample PID Sinch Depth Depth			Depth (ft.)	Lithology USCS		Soil and Rock Description			Diagram																		
				NM	0		CL	soft 0.5 unconfined comp square foot (tsf), brown (1 CLAY WITH GRAVEL, m plastic, noncohesive, no c 1.5 - AS ABOVE; very cohesive, trace subar	0YR 5/3), moist, SÁND pist, with organic rootlet odor or staining / stiff 2.5 qu (tsf), mediu	Y LEAN s, non-	Cement Med. Bentonite																
	СВ	NR	92	NM							onite Chips																
SC-8 (5'4''- 5'0''), 6/9/2016	SS	3	4::	NM	5	$\left[\begin{array}{c} \leftarrow \end{array} \right]$	СН	5.0 - soft 0.5 qu (tsf), dark grayish brown (10YR 4/2), FAT	/2). FAT																		
77:30 PM, SEE COC	СВ	СВ										, r						NM		کر کر کر ا		CLAY, moist, high plastici staining					
			CB NR	CB NR	80	NM	10																				
				NM			CL	11.0 - AS ABOVE; me		(0) - 544	- 10/20 Colorado																
	СВ	СВ	СВ	СВ	СВ	СВ	СВ	СВ	СВ	СВ	СВ	NR	100	NM				12.0 - stiff 2.0 qu (tsf), dar CLAY, moist, low plasticit brown (10YR 4/2) and bro or staining	y, cohesive, mottled dar	k grayish	Silica Sand						
					- 15 _			14.5 - AS ABOVE; ha noncohesive	rd 4.0 qu (tsf), non-plas	tic,																	
					NM				16.0 - AS ABOVE; tra 16.7 - AS ABOVE; wh	ce calcite deposit ite (10YR 8/1) calcite d	eposits																
	СВ	NR	90	NM	+ 20		CLAY. STON	dry, massive, blocky, mot brownish yellow (10YR 6/	tled dark gray (10YŔ 4/ 8)																		
	SS	50	11"	NM		<u></u>	-	20.0 - Core Barrel Re	fusal			ti -	Ť.														

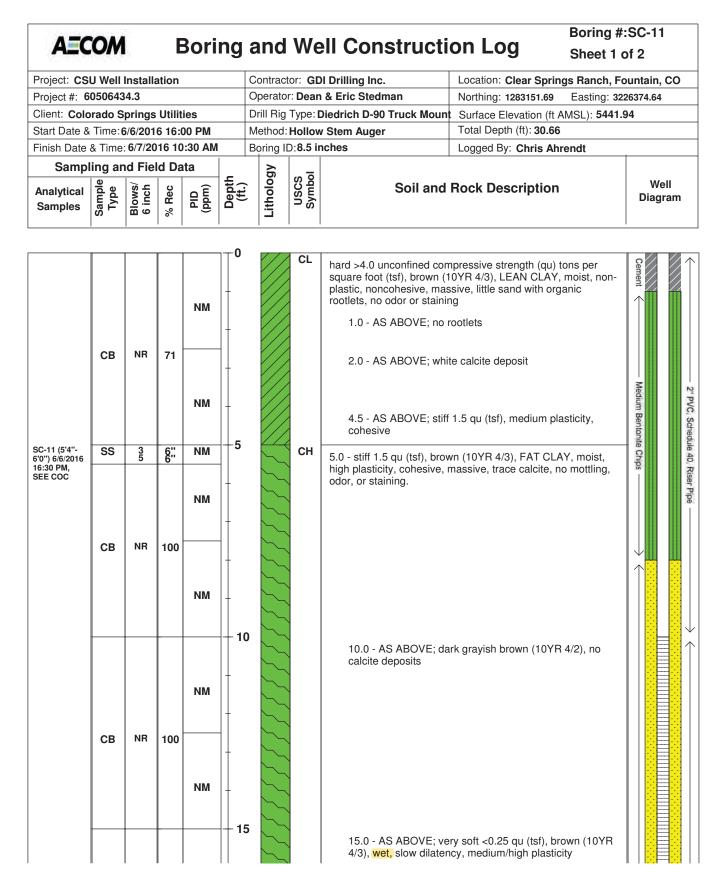
Remarks and Datum Used:	Monitoring well SC-8 was constructed with above-grade well protection; SS= Split-Spoon sampler			
AECOM	California sampler was collected from SC-8 from 5'4" to 6'0"	Depth to Water Table (ft):		
6200 South Quebec Street Greenwood Village, CO 80111	NR = Not Recorded, CB = 5' long, 4" Diameter Core Barrel	6.75 TOIC 6/9/2016 12:00 PM		
Direct: (303) 740-3916 Office: (303) 740-2600	NM = Not Measured, ft. TOIC = Feet from Top of Inner PVC Casing			

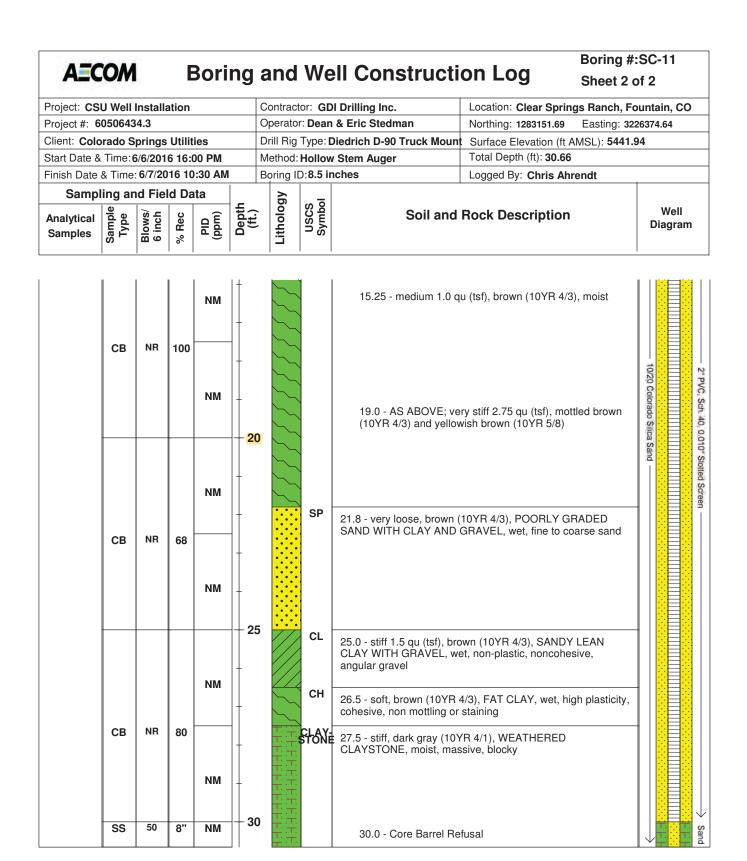


Remarks and Datum Used:	Monitoring well SC-9 was constructed with above-grade well protection; SS= Split-Spoon sampler			
AECOM	Soil samples were not collected from soil boring SC-9	Depth to Water Table (ft):		
6200 South Quebec Street Greenwood Village, CO 80111	NR = Not Recorded, CB = 5' long, 4" Diameter Core Barrel	15.23 TOIC 6/9/2016 08:40 AM		
Direct: (303) 740-3916 Office: (303) 740-2600	NM = Not Measured, ft. TOIC = Feet from Top of Inner PVC Casing			

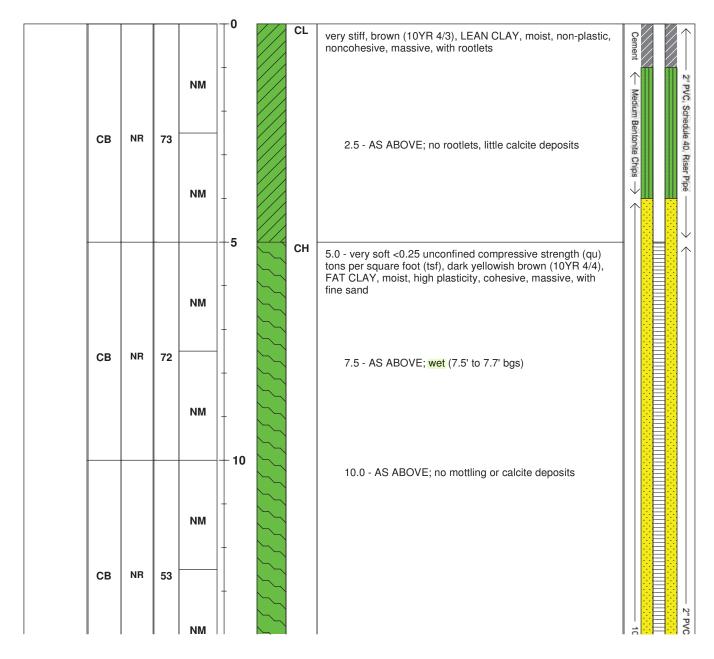


Remarks and Datum Used:	Monitoring well SC-9 was constructed with above-grade well protection; SS= Split-Spoon sampler			
AECOM	Soil samples were not collected from soil boring SC-9	Depth to Water Table (ft):		
6200 South Quebec Street Greenwood Village, CO 80111	NR = Not Recorded, CB = 5' long, 4" Diameter Core Barrel	15.23 TOIC 6/9/2016 08:40 AM		
Direct: (303) 740-3916 Office: (303) 740-2600	NM = Not Measured, ft. TOIC = Feet from Top of Inner PVC Casing			

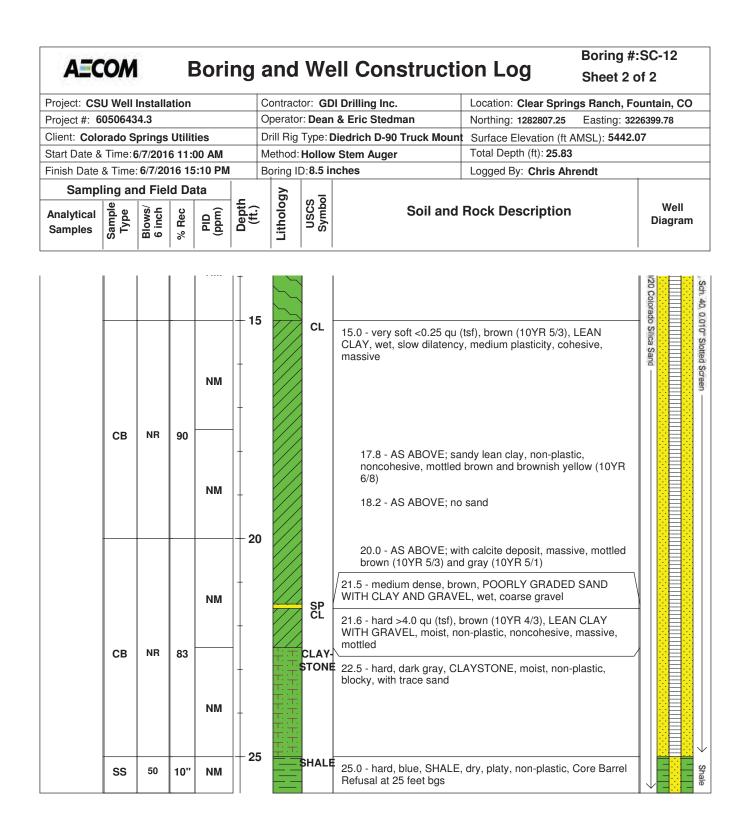

Boring #:SC-10 **Boring and Well Construction Log** AECOM Sheet 1 of 2 Project: CSU Well Installation Contractor: GDI Drilling Inc. Location: Clear Springs Ranch, Fountain, CO Project #: 60506434.3 Operator: Dean & Eric Stedman Northing: 1283428.94 Easting: 3226344.60 Client: Colorado Springs Utilities Drill Rig Type: Diedrich D-90 Truck Mount Surface Elevation (ft AMSL): 5445.18 Total Depth (ft): 35.25 Start Date & Time: 6/9/2016 12:00 PM Method: Hollow Stem Auger Finish Date & Time: 6/9/2016 17:00 PM Boring ID:8.5 inches Logged By: Chris Ahrendt Sampling and Field Data Lithology USCS Symbol Depth (ft.) Well Blows/ 6 inch Soil and Rock Description Sample Type DID (mdd) Analytical Rec Diagram Samples %


Remarks and Datum Used:	Monitoring well SC-10 was constructed with above-grade well protection; SS= Split-Spoon sampler			
AECOM	Soil samples were not collected from soil boring SC-10	Depth to Water Table (ft):		
6200 South Quebec Street Greenwood Village, CO 80111	NR = Not Recorded, CB = 5' long, 4" Diameter Core Barrel	9.73 TOIC 6/10/2016 11:23 AM		
Direct: (303) 740-3916 Office: (303) 740-2600	NM = Not Measured, ft. TOIC = Feet from Top of Inner PVC Casing			

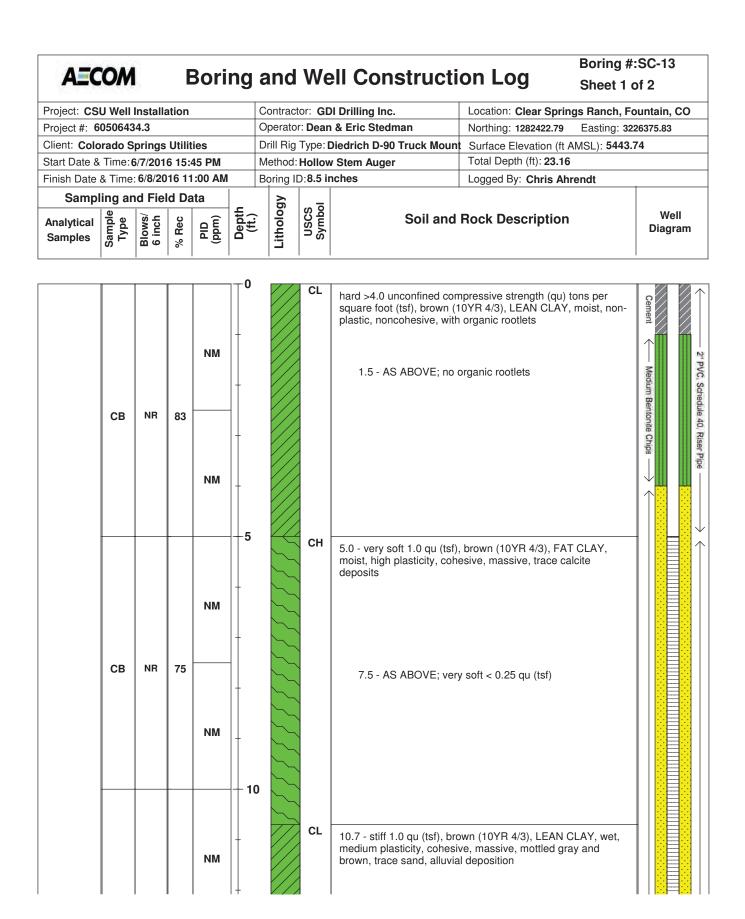
Remarks and Datum Used:	Monitoring well SC-10 was constructed with above-grade well protection; SS= Split-Spoon sampler			
AECOM	Soil samples were not collected from soil boring SC-10	Depth to Water Table (ft):		
6200 South Quebec Street Greenwood Village, CO 80111	NR = Not Recorded, CB = 5' long, 4" Diameter Core Barrel	9.73 TOIC 6/10/2016 11:23 AM		
Direct: (303) 740-3916 Office: (303) 740-2600	NM = Not Measured, ft. TOIC = Feet from Top of Inner PVC Casing			

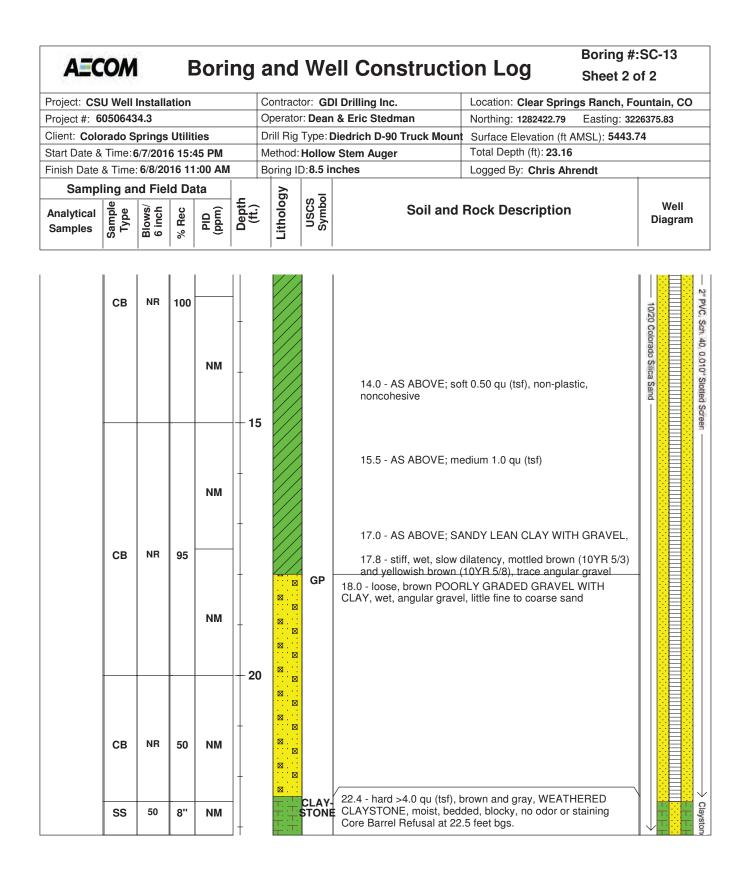


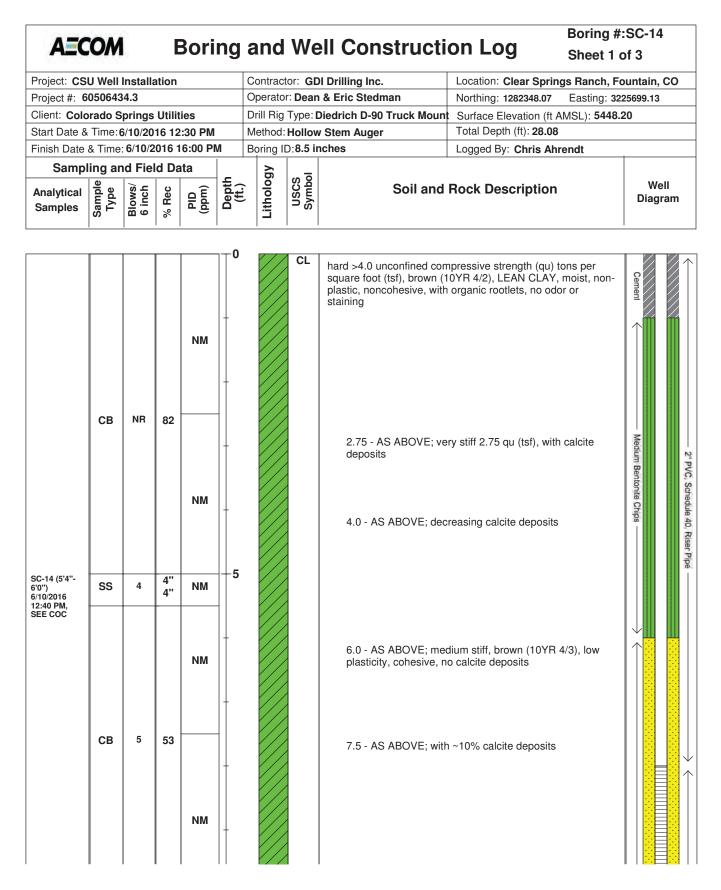
Remarks and Datum Used:	Monitoring well SC-11 was constructed with above-grade well protection; SS= Split-Spoon sampler			
AECOM	California sampler was collected from SC-11 from 5'4" to 6'0"	Depth to Water Table (ft):		
6200 South Quebec Street Greenwood Village, CO 80111	NR = Not Recorded, CB = 5' long, 4" Diameter Core Barrel	7.63 TOIC 6/7/16 12:52 PM		
Direct: (303) 740-3916 Office: (303) 740-2600	NM = Not Measured, ft. TOIC = Feet from Top of Inner PVC Casing			

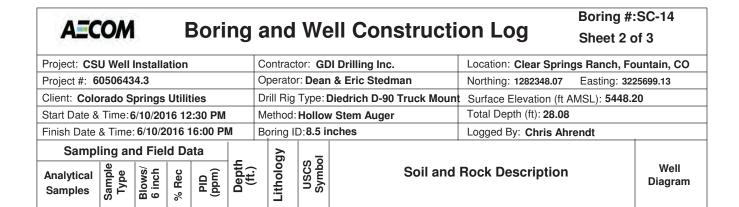


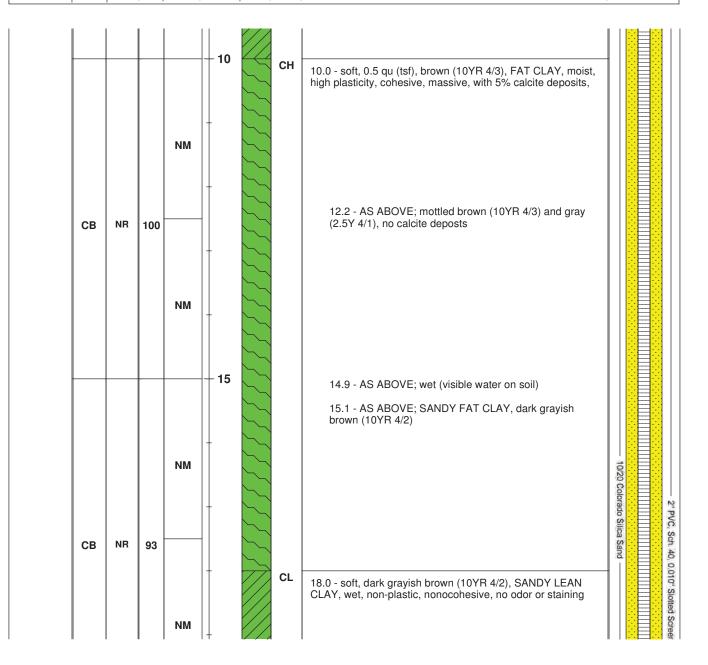
Remarks and Datum Used:	Monitoring well SC-11 was constructed with above-grade well protection; SS= Split-Spoon sampler			
AECOM	California sampler was collected from SC-11 from 5'4" to 6'0"	Depth to Water Table (ft):		
6200 South Quebec Street Greenwood Village, CO 80111	NR = Not Recorded, CB = 5' long, 4" Diameter Core Barrel	7.63 TOIC 6/7/16 12:52 PM		
Direct: (303) 740-3916 Office: (303) 740-2600	NM = Not Measured, ft. TOIC = Feet from Top of Inner PVC Casing			


Boring #:SC-12 **Boring and Well Construction Log** AECOM Sheet 1 of 2 Project: CSU Well Installation Contractor: GDI Drilling Inc. Location: Clear Springs Ranch, Fountain, CO Project #: 60506434.3 Operator: Dean & Eric Stedman Northing: 1282807.25 Easting: 3226399.78 Drill Rig Type: Diedrich D-90 Truck Mount Client: Colorado Springs Utilities Surface Elevation (ft AMSL): 5442.07 Start Date & Time: 6/7/2016 11:00 AM Total Depth (ft): 25.83 Method: Hollow Stem Auger Finish Date & Time: 6/7/2016 15:10 PM Boring ID:8.5 inches Logged By: Chris Ahrendt Sampling and Field Data Lithology USCS Symbol Depth (ft.) Well Sample Type Soil and Rock Description Blows/ 6 inch DID (mdd) Analytical % Rec Diagram Samples

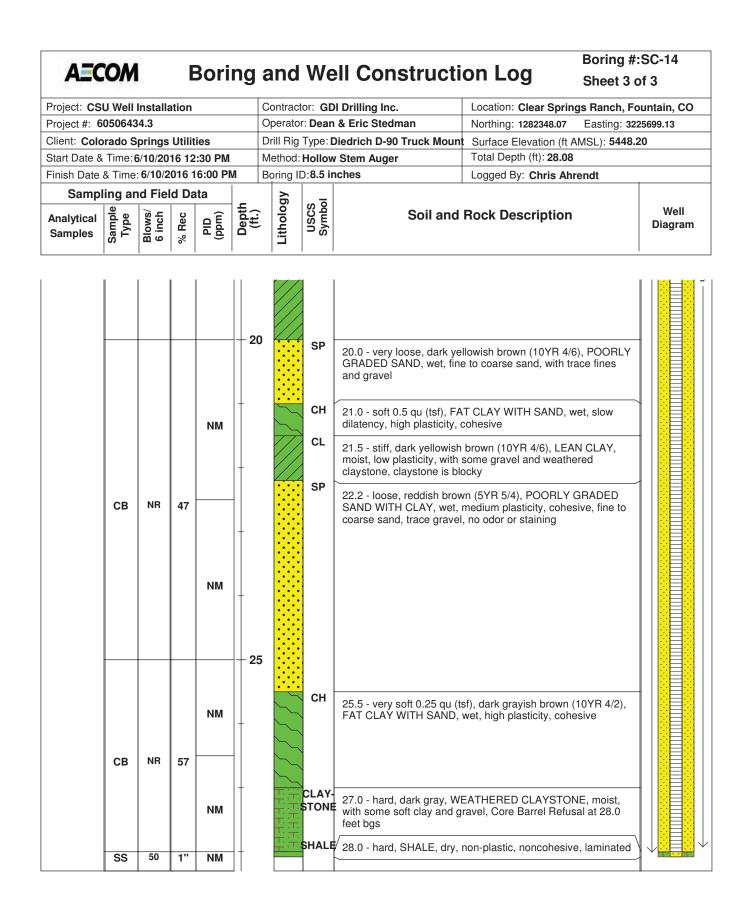

Remarks and Datum Used:	Monitoring well SC-12 was constructed with above-grade well protection; SS= Split-Spoon sampler			
AECOM	Soil samples were not collected at soil boring SC-12	Depth to Water Table (ft):		
6200 South Quebec Street Greenwood Village, CO 80111	NR = Not Recorded, CB = 5' long, 4" Diameter Core Barrel	7.55 TOIC 6/7/16 15:17 PM		
Direct: (303) 740-3916 Office: (303) 740-2600	NM = Not Measured, ft. TOIC = Feet from Top of Inner PVC Casing			


Remarks and Datum Used:	Monitoring well SC-12 was constructed with above-grade well protection	on; SS= Split-Spoon sampler
AECOM	Soil samples were not collected at soil boring SC-12	Depth to Water Table (ft):
6200 South Quebec Street Greenwood Village, CO 80111	NR = Not Recorded, CB = 5' long, 4" Diameter Core Barrel	7.55 TOIC 6/7/16 15:17 PM
Direct: (303) 740-3916 Office: (303) 740-2600	NM = Not Measured, ft. TOIC = Feet from Top of Inner PVC Casing	


Remarks and Datum Used:	Monitoring well SC-13 was constructed with above-grade well protection	on; SS= Split-Spoon sampler
AECOM	Soil samples were not collected at soil boring SC-13	Depth to Water Table (ft):
6200 South Quebec Street Greenwood Village, CO 80111	NR = Not Recorded, CB = 5' long, 4" Diameter Core Barrel	8.57 TOIC 6/8/16 11:25 AM
Direct: (303) 740-3916 Office: (303) 740-2600	NM = Not Measured, ft. TOIC = Feet from Top of Inner PVC Casing	



Remarks and Datum Used:	Monitoring well SC-13 was constructed with above-grade well protection	on; SS= Split-Spoon sampler
AECOM	Soil samples were not collected at soil boring SC-13	Depth to Water Table (ft):
6200 South Quebec Street Greenwood Village, CO 80111	NR = Not Recorded, CB = 5' long, 4" Diameter Core Barrel	8.57 TOIC 6/8/16 11:25 AM
Direct: (303) 740-3916 Office: (303) 740-2600	NM = Not Measured, ft. TOIC = Feet from Top of Inner PVC Casing	



Remarks and Datum Used:	Monitoring well SC-14 was constructed with above-grade well protection	on; SS= Split-Spoon sampler
AECOM	California sampler was collected from SC-14 from 5'4" to 6'0"	Depth to Water Table (ft):
6200 South Quebec Street Greenwood Village, CO 80111	NR = Not Recorded, CB = 5' long, 4" Diameter Core Barrel	9.16 TOIC 6/10/16 15:55 PM
Direct: (303) 740-3916 Office: (303) 740-2600	NM = Not Measured, ft. TOIC = Feet from Top of Inner PVC Casing	

Remarks and Datum Used:	Monitoring well SC-14 was constructed with above-grade well protection	on; SS= Split-Spoon sampler
AECOM	California sampler was collected from SC-14 from 5'4" to 6'0"	Depth to Water Table (ft):
6200 South Quebec Street Greenwood Village, CO 80111	NR = Not Recorded, CB = 5' long, 4" Diameter Core Barrel	9.16 TOIC 6/10/16 15:55 PM
Direct: (303) 740-3916 Office: (303) 740-2600	NM = Not Measured, ft. TOIC = Feet from Top of Inner PVC Casing	

Remarks and Datum Used:	Monitoring well SC-14 was constructed with above-grade well protection	on; SS= Split-Spoon sampler
AECOM	California sampler was collected from SC-14 from 5'4" to 6'0"	Depth to Water Table (ft):
6200 South Quebec Street Greenwood Village, CO 80111	NR = Not Recorded, CB = 5' long, 4" Diameter Core Barrel	9.16 TOIC 6/10/16 15:55 PM
Direct: (303) 740-3916 Office: (303) 740-2600	NM = Not Measured, ft. TOIC = Feet from Top of Inner PVC Casing	

BORING LOG	CONSULTING SOILS ENGINEERS 10600 W. Alameda Ave., Suite L-7 Lakewood, Colorado 80226
BNO. 155 NAME Ash Pond, R. D. Nixon Power Plant	DATE STARTED6/24/77
DLE NO. 77-11 ENGINEER CRN	DATE COMPLETED
EVATION 5433.4 COORDINATES 282,000	N2,228,000 F
ULLING COMPANY Drilling Service RIG CME-55	DRILLERMax_Muckey
'PE OF BORING 4-inch continuous flight auger.	

CLASSIFICATION OF LAYERS (UNIFIED SOIL CLASSIFICATION SYSTEM)

DE	РТН	SOIL														
om	To	SYMBOL				SCRIPTION										
o	211		Торвој	Topsoil, Clay, sandy, silty, slightly moist, dark brown, roots.												
211	51	CL	Clay, in bed		ff, silty, mois	t, gray a	ınd yello	w brown, washe								
5'	13'	SM	washed	in sandsto	ium dense, fine one at 13 feet.	sized, y	ellow br	own and gray,								
3	<u>16'</u>	GC			iense, clayston one gravel size			y moist, brown								
61	19.3'			k, Clayston nd brown.	ne-Shale, very	hard, san	dy, slig	htly moist,								
				CLASSIFICATIO	ON OF INDIVIDUAL S	AMPLES										
PTH 'op)	BLOW	TYPE	SYMBOL	MOISTURE	SAND GRADING	BEDROCK	COLOR	COMMENTS								
~~,				Dry Moist V. Moist Wet	Fine Medium Coarse Gravel (200)	Sandstone Siltstone	claysture									
<u>).</u> 1	17/12	Cal	CL-SM	X	X X 60			Washed in								
						E.		Bedrock								
	_	1 1		1.1		A 11										

L - 2" I.D., 2.5" O.D. Drive Sampler SS. – Standard Split Screen ST. - Snelby Tupe

Y

Х

XX

X Х

DEPTH TO WATER TABLE AT BORING COMPLETION None

40

ή. 30

29/12

50/11

50/4

91

[Cal

Cal

Cal

SM

Bedrock

DEDTH TO MATED TABLE 31 ------Vone

Yellow Frown

Erown

& Erown

Gray

CONSULTING SUILS ENGINEERS 10600 W. Alameda Ave., Suite L-7 Lakewood, Colorado 80226

JOB NO. 155 NAME Ash Pond, R. D. Nixon Power Plant DATE STARTED	6/24/77
HOLE NO. 77-12 ENGINEER CRN DATE COMPLET	ED 6/24/77
ELEVATION 5433.8 COORDINATES 283.000 N 2.23	28.000
ELEVATION 5433.8 COORDINATES 283,000 N 2.22 DRILLING COMPANY Drilling Service RIG CME-55 DRILLER Max	Muckey
TYPE OF BORING 4-inch continuous flight auger.	

CLASSIFICATION OF	LAYERS (UNIFIED SOIL CLASSIFICATION SYSTEM)	

DE	РТН	SOIL	
From	To	SYMBOL	SOIL DESCRIPTION
0	211		Topsoil, Clay, sandy, silty, brown, roots
			No topsoil at actual hole location.
211	74!	CT.	Clay, sandy, silty, stiff, slightly moist to moist, brown Fine silty sand at 14 feet.
1.1	201	SM-SC	Sand, clayey and silty, medium dense, fine sized, moist, gray and brown.
	221	GP-GC	Gravel, clean to clayey, dense, moist, brown.
21	231		Weathered Claystone-Shale, stiff, moist, gray.
31	24.21		Bedrock, Claystone-Shale, very hard, gray, sandy, layered horizontal.
			CLASSIFICATION OF INDIVIDUAL SAMPLES

)EPTH BLOW (Top), COUNT						MOISTURE				SAND GRADING					COLOR	COMMENTS
				Dry	Moist V Moist		Fine	Medium	Coarse	Gravel	% Fines (-200)	Sandstorie	Siltstone	Claystone		
41	50/11	Cal	CL		хI		X	X		3	.80	1	ş 81		Erown	
91	_28/12	Cal	CL	i	X		X	X	32		80	40	1		Brown	
41	23/12	Cal	SM.	:	X	i	X		125	- 8	40				Brown	Gray
<u>, i</u>	33/12	Cal	SM		X	10	x		17		40	1		-	Brown	
\square	<u> 50/3</u>	Cal	Clayst	ne!	i	:	1	j t	1	1				·····		
						1				- 31	-	1	1			
				1		8	ų.	- 8		1		1				
				1				- 1	4				1			<u></u>

AL - 2" I.D., 2.5" O.D. Drive Sampler

SS. - Standard Split Screen ST. - Sheiby Tube

DEPTH TO WATER TABLE AT BORING COMPLETION None

CONSULTING SULLS ENGINEERS 10600 W. Alameda Ave., Suite L-7 Lakewood, Colorado 80226

DB NO. 195 NAME Ash Pond, R. D. Nixon Power Plant _ DATE STARTED 6/22/77	
OLE NO ENGINEER CRN DATE COMPLETES (22) (RR	
LEVATION 5447.8 COORDINATES 284.000	,
LEVATION <u>5447.8</u> COORDINATES <u>284,000</u> N <u>2,228,000</u> E RILLING COMPANY Drilling Service RIG CME-55 DRILLER Max Muckey	;
YPE OF BORING 4-inch continuous flight auger DRIELER Muckey	

DEPTH SOIL		SOIL	CLASSIFICATION OF LAYERS (UNIFIED SOIL CLASSIFICATION SYSTEM)							
rom	70	SYMBOL	SOIL DESCRIPTION							
0	2"		Topsoil, Clay, silty, sandy, tan, roots.							
211	31	CL	Clay, sandy, silty, stiff to very stiff, dry to slightly moist, brown.							
31	61	SM	Sand, clean to silty, dense, gravelly, slightly moist, brown.							
51	18'	CL	Clay, silty, sandy, stiff, gravelly, slightly moist, brown, som thin sand, gravelly layers 1 to 6 inches thick							
0			From 15 feet thin bedded clay, very silty with fine sand.							
3•	381	SC	Sand and Gravel, clayey, medium dense to dense, slightly moist, brown and red brown.							
3 •	39.31		Bedrock, Shale, very hard, fractured, blocky, slightly moist, gray, brown, iron stains on fractures.							

<u> </u>				CLASSIFICATIO	N OF INDIVIDUAL SA	MPLES		
:РТН Гор)	BLOW COUNT	TYPE	SYMBOL	MOISTURE	SAND GRADING	BEDROCK	COLOR	COMMENTS
	,	-		Dr _Y Moist V. Moist Wet	Fine Medium Coarse Gravel & Fines (-200)	Sandstone Siltstone Claystone		
<u>10</u> 1	15/12	Cal	SM	X S1.	X X X 51. 20		Brown	
31	14/12	Cal	<u> </u>	X X	X X X 70	4	Brown	
	17/12	Cal	CL	XX	X 60		Brown	
		Cal	SC	X X A	X X X S 30		Brown	
	<u>13/12</u>		SC-CL	<u>X X</u>	<u>X X 50- 5</u>	0	Erown	
	44/12	Cal	CL	XX	<u>X X X S 60</u>		Brown	
	50/7	Cal	SC-CL	XX	X X X 50-5	0	Brown	
7	50/4	Cal	Claysto	elal		1		

- - 2" I.D., 2.5" O.D. Drive Sampler SS. - Standard Split Screen ST. - Shelby Tube

HUTO DEDBOOK 38 Toot

DEPTH TO WATER TABLE AT BORING COMPLETION None

CONSULTING SOILS ENGINEERS 10600 W. Alameda Ave., Suite L-7 Lakewood, Colorado 80226

HOLE NO. 77-14 ENGINEER CRN	DATE STARTED 6/22/77
	A A .
ELEVATION5475.4 COORDINATES 285.000	DATE COMPLETED _ 0722777
ELEVATION5475.4 COORDINATES285,000 DRILLING COMPANY	N2,228,000E
YPE OF BORING 4-inch continuous flight auger.	DRILLERMAX MUCKBY

0=	РТН	5011	CLASSIFICATION OF LAYERS (UNIFIED SOIL CLASSIFICATION SYSTEM)
From	То	SOIL SYMBOL	SOIL DESCRIPTION
0	211		Topsoil, Clay, sandy, silty, dry, tan, roots.
211	3.51	CI.	Clay, sardy, silty, stiff, gravelly, slightly moist, brown.
3.5	6.51	<u>SM</u>	Sand, silty, clayey, dense, gravelly, slightly moist, brown, gravel to B-inch size.
6.3	161	CL	Clay, very sandy, stiff, gravelly, moist, brown, layers of sand and gravel from 1 to 6 inches thick.
2	19.51		Bedrock, Shale, hard, fractured, blocky, gray, brown, slightly moist.

этн	21.004			1				1				ALSA		5			
	BLOW COUNT	TYPE	SYMBOL		4013	STU	RE	s		D GF	AD	NG	BE	DRC	СК	COLOR	COMMENTS
	,			Dry	Moist	V. Moist	Wet	Fine	Medium	Coarse	Gravel	% Fines (-200)	Sandstone	Siltstone	Claystone		
្នុរ	33/12	Cal	SM		I	6 - 2		1	3								
<u></u>	14/12	Cal	CL	x	X	2 3		X	Х	x		50				Erown	
<u>ur</u> 21 1	<u>33/12</u> 50/5	Cal Cal	CL-SC Claysto	X	X			X			X					Brown	5
C) —							3			1		1				
								-			-		-				

TH TO BEDROCK 16 Feet

SS. - Standard Split Screen ST. - Shelby Tube

DEPTH TO WATER TABLE AT BORING COMPLETION MODE DEPTH TO MATER TADLE 17 ----6

87 - - - È

i HE	ISHER	COM		ВÚ	king lu		10600 W. A Lake	Alameda Ave., Suite L-7 Swood, Colorado 80226
				FULL R.	D. Nixon Power	<u>Plant</u> DA	TE STARTE	p6/22/77
ULEI								
LEVA		<u>-2422.8</u> Cu	stom au	COORDIN	ATES234,00	000	N 2	TED <u>6/22/77</u> 227,000 E Muckey
HILL		NYDr	diling.	Service_RI	GCME-55	DRII	LER. Mai	C Muckey
YPE C	OF BORING	4_		<u>i a a a a a a a a a a a a a a a a a a a</u>	<u>ignt auger</u>			
<u> </u>			CLASSIF	ICATION OF LA	YERS (UNIFIED SOIL	CLASSIFICATI	ON SYSTEM	л)
From	EPTH I To	SOIL						
	10				SUIL D	ESCRIPTION		
0	211		Topsoi	1. Clay, s	andy, silty, st	4.8.8 dan		· · · · · · · · · · · · · · · · · · ·
_							<u>prown t</u>	o tan, roots.
2"	31	CL	Clay	Condu - 1				
			10100	sandy, sil	ty, medium stif	<u>f to 2.5 f</u>	eet to	very stiff on
			down,	ary, tan,	gravelly at 3 f	eet.		
<u>3'</u>	5'	SC	Sand a	nd Gravel,	clayey, dense,	alightly	70101	
			brown.				<u></u>	prown and red
51	71	CL	01.07					
-	·		10100 1	sandy, Very	stiff, slight	Ly moist,	brown.	
7			╉────					
\sim	9.5	· <u> </u>	Bedrock	t, Shale, h	ard, sandy, blo	cky. fract	tured.	
			22					
							<u> </u>	
			=					
			<u> </u>					12
								-
							- m	
				CLASSIFICATIO	N OF INDIVIDUAL SA	MPIES		
?тн	BLOW	TYPE	SYMBOL	MOISTURE	SAND GRADING	BEDROCK		
ן נקנ	COUNT					DEDRUCK	COLOR	COMMENTS

Sandstone Claystone Dry Moist V. Moist Wet Siltstone Medium <u>%</u> Fines (200) Cuarse Gravel Fine ŧ 39/12 Cal SC χ X X X X 40 Brown 50/6 Cal Claystone į. - 2" I.D., 2.5" O.D. Drive Sampler SS. - Stangard Split Screen

ST. - Snelby Tube

DEPTH TO WATER TABLE AT BORING COMPLETION None DEDTH TO WATED ד ר ----**_** ..._

••

	SHER			/							LC			1	0600	W. Ala Lakew	i SOILS ENGINE ameda Ave., Suite rood, Colorado 8
Brec	1. <u>177</u>	N	AME Ash	Po	nd,	R.	D.	Nix	on	Por	ver F	lan	.t		E STA	RTED	6/22/77
JLE I	NO. <u>77-</u>	16 E 5/./.2			CRN	Ľ	_							DAT	E CON	PLET	ED 6/22/77
CVA		U	uston Ai	ise	- c	OOR	DINA	TES_		_2	83,0	00		_	N	2,22	ED <u>6/22/77</u> 7,000 Muckey
		NY	rilling	Ĉo	n pa	ny	RIG		_	CME	-55			DRIL	LER	Max	Muckey
PE O	F BORING	4		244 9		ULS_	-	SUL	<u>au</u>	<u>ger</u>							
			CLASSI	FIC	ATIC		LA	ERS	UNI	FIED	SOIL	CLA	SSIF			STEM	
01 0m	PTH To	SOIL SYMBO	1														
		011100		_	_	_					SOIL D	ESCI	TIPTI	ON			
)	211		Topso	<u>11</u> ,	C;	lay,	si	lty.	ff	Lne	Sand	ίv	eti	20			
												<u>.,, , ,</u>	011	<u></u>	<u>ary</u> ,	tan	•
211	1161	CL	Clav		ndi											_	
			Clay,	00	шu,	<u>, 5</u>	<u>+ 1</u> C	<u>y, 6</u>	tli	Ξ,	dry.	, br	rown			_	
	<u> </u>		Gy Deu						_	_							
	<u> </u>		Moist	fr	<u>оп</u>	10	fee	t do	wn.				1				
_	┟───┼			_													
1	19.31		Bearo	ck,	_C1	ays	ton	e, s	hal	е.	hard	b b					
												., .	2011	<u></u> a	1 810	<u>ay.</u>	
			1				_			_			_	_			
0					_					-					<u> </u>		
0	<u> </u>									-		_					
			+														
									·	_				_			
					_	-	_	_		-		_					
													_				
					_	_	-				-	-				_	
-						_	_									_	
				ter	<u> </u>	t 25		et j	 	pi e	zomei	ter	100) fee	t 50	n+5	and 40 feet
			we we	St	OI	301	<u>e</u> 7	7-16						fee	t 50	uth a	and 40 feet
			we	St CL/	OI ASSI	HO1 FICA	e 7 TION	<u>7-16</u> I OF II	VDIV	/IDU	ALSA			fee	<u>t so</u>	uth :	and 40 feet
	BLOW	ТҮРЕ	Wa We SYMBOL	St CL/	OI ASSI	301	e 7 TION	7-16	VDIV	/IDU	ALSA	MPL			t_50	-	
H)		ТҮРЕ	we	St CL/	OI ASSI	FICA	e 7 TION	<u>7-16</u> I OF II	VDIV	/IDU	ALSA	MPL BI	ES	оск		-	and 40 feet COMMENTS
		ТҮРЕ	we	St CL/	01 4551 4015	FICA		7-16 I OF II SAN	D GF	AD	IAL SA	MPL BI	ES DRC	оск		-	
		ТҮРЕ	we		01 4551 4015	FICA		7-16 I OF II SAN	D GF	AD	IAL SA	MPL BI	ES DRC	оск		-	
	COUNT		SYMBOL	CL/	OI ASSI	FICA		Vedium	Coarse Coarse		% Fines (-200)	MPL	ES			-	
	COUNT 27/12	Cal	SYMBOL CL		01 4551 4015	FICA		7-16 I OF II SAN	Coarse	AD	AL SA ING (200) 80	MPL BI	ES DRC	Claystone XX		R	
	COUNT 27/12 13/12	Cal Cal	SYMBOL CL CL	CL/	ASSI AOIS	FICA		7-16 I OF II SAN	Coarse Coarse	AD	AL SA ING (500) 800 800 800 800	MPL BI	ES DRC	Claystone XC	COLC	2 1	
	27/12 13/12 25/12	Cal Cal Cal	SYMBOL CL		01 4551 4015	FICA		7-16 I OF II SAN	Coarse Coarse	AD	AL SA ING (200) 80	MPL BI	ES DRC	Claystone XX	COLC		
	COUNT 27/12 13/12	Cal Cal	SYMBOL CL CL		ASSI AOIS	FICA		7-16 I OF II SAN	Coarse Coarse	AD	AL SA ING (500) 800 800 800 800	MPL BI	ES DRC	Claystone XX	COLC		
	27/12 13/12 25/12	Cal Cal Cal	SYMBOL CL CL		ASSI AOIS	FICA		7-16 I OF II SAN	Coarse Coarse	AD	AL SA ING (500) 800 800 800 800	MPL BI	ES EDRC	Claystone XX	COLC		
	27/12 13/12 25/12	Cal Cal Cal	SYMBOL CL CL		ASSI AOIS	FICA		7-16 I OF II SAN	Coarse Coarse	AD	AL SA ING (500) 800 800 800 800	MPL BI	ES EDRC	Claystone XX	COLC		

TH TO REDROCK 16 Feet

ST. - Sheiby Tube

DEPTH TO WATER TABLE AT BORING COMPLETION None ----

CONSULTING SOILS ENGINEERS 10600 W. Alameda Ave., Suite L-7 Lakewood, Colorado 80226

JOB NO. 155 NAME Ash Pond, R. D. Nixon Power Plant	DATE STARTED 6/21/77
HOLE NO. 27-17 ENGINEER CON	
ELEVATION 5442.8 COORDINATES 282,433	2 - 227 - 381
ELEVATION 5442.8 COORDINATES 282,433 DRILLING COMPANY Drilling Service RIG CME-55	DRUISD Vax Muchan
FYPE OF BORING 4-inch continuous flight auger.	DRICER

	PTH	SOIL	CLASSIFICATION OF LAYERS (UNIFIED SOIL CLASSIFICATION SYSTEM)						
From	70	SYMBOL	SOIL DESCRIPTION						
0	211		Topsoil, Clay, sandy, silty, brown, roots.						
211	91	CL.	Clay, sandy, silty, stiff, slightly moist to moist, brown.						
ġ1	18•	SM	Sand, silty, medium dense, moist, fine sized, gray-brown.						
181	21 '	GC	Claystone with gravel, dense, moist, gray.						
-0	23'		Weathered Bedrock, Sandstone, silty, clayey, wet, brown and gray.						
31	24.3'		Bedrock, Sandstone and Claystone layered, very hard, gray and brown.						

EPTH BLOW Top) COUNT		TYPE	SYMBOL	MOISTURE	SAND GRADING	BEDROCK	COLOR COMMENTS
			Dry Moist V. Moist Wet	Fine Medium Coarse Gravel & Fines (-200)	Sandstone Siltstone Claystone		
4	12/12	Cal	CL	X	X X 80		Brown
9.	11/12	Cal.	SM	X	x 40	I	Gray-Prown
4 1	36/12	Cal	SM	11 ÷ 6 55	X 40		Gray=Brown
91 1		Cal	SM W1	th Gravel	40		Gray-Brown
\bigcirc	50/4	Cal					
				1 1			
	-			6 G B			
T				5 5 E			<u> </u>

L - 2" I.D., 2.5" O.D. Drive Sampler

SS. - Standard Solit Screen ST. - Shelby Tube

DEPTH TO WATER TABLE AT BORING COMPLETION 19.51

F'-HERMA	N BORING LOG	CONSUL FING SOILS ENGINEERS 10600 W. Alameda Ave., Suite L-7 Lakewood, Colorado 80226
JB NO. 155	NAME Ash Pond, R. D. Nixon Power Plant	_ DATE STARTED 6/25/77 _ DATE COMPLETED 6/25/77
LEVATION 543		
RILLING COMPANY	Drilling Service RIGCME-55	DRILLER Max Muckey
YPE OF BORING	4-inch continuous flight auger.	

DEPTH SOIL			CLASSIFICATION OF LAYERS (UNIFIED SOIL CLASSIFICATION SYSTEM)
rom	To	SYMBOL	SOIL DESCRIPTION
0	211		Topsoil, Clay, sandy, very silty, slightly moist, tan, roots.
<u>711</u>	<u>a</u> ,	<u>5M-MT.</u>	Sand, very silty and clavey, medium dense, fine sized, brown to tan.
31	15!	CL	Clay, sandy, silty, gravelly, stiff, moist, brown.
			Fine to coarse sand and gravel sizes in 14-foot sample.
.5'	18'	SM-SC	Sand, silty, clayey, gravelly, medium dense, moist to wet,
-0			brown.
81	19.81		Bedrock, Shale-Claystone, very hard, fractured, blocky, thin sand layers, dark gray.

EPTH Top).	BLOW COUNT	TYPE	SYMEOL	MOISTURE	SAND GRADING	BEDROCK	COLOR	COMMENTS
				Dry Mcist V. Moist Wet	Fine Medium Coarse Gravel % Fines (·200)	Sandstone Siltstone Claystone		
<u>1</u> ,1		Cal	SM	x	x x 40		Brown	· · · · · · · · · · · · · · · · · · ·
<u>91</u>	22/12	Cal	CI.	x	X 70		Erown	
<u></u> †	11/12	Cal	CL-SC	y i	X X X 50-5	0	Ercwn	
	8	Cal	Bedrock				Dark Gra	av
						È.		
						4		
	2			- 載 該 - 超	-	1 1		

SS. - Standard Split Screen ST. - Shelby Tupe

.

DEPTH TO WATER TABLE AT BORING COMPLETION 17.5

HE	CHER	MAN COM	PANy	ĺ	BO							Lakev	ameda Ave., Suite L-7 lood, Colorado 80226
)B NO	155	NA	ME Ash I	Pond,	<u>R.</u> D	NI	xon)	Powe	r Pl	ant	DA	TE STARTED	6/25/77
OLE N	107	<u>19</u> EN	IGINEER	CRN	<u> </u>						DA	TE COMPLET	ED 6/25/77
LEVA		5441.	5	cc	ORDIN	ATES	s	282	.235			N 2.2	27.382
RILLI	NG COMPA		illing :	<u>zer</u> Servic	e_Ri	IG	C3	<u>। जिल्ल</u> म	5		DBI	LIFR Max	227.382 E
YPE O	F BORING	4-	inch cor	ntinud	ous f	ligh	it aug	ger.				a to a c c a superior data	<u></u>
	Sec. 1		CLASSIF	ICATIO	N OF L	AYER		FIED	SOIL		SIFICAT	ION SYSTEM)	
-	РТН	SOIL						-					
From	To	SYMBOL					_	S	DILDE	SCRI	PTION		
0	211		Торвој	<u>ı, ci</u>	<u>ay, s</u>	sand	y, si	<u>1ty</u>	br	own,	root	s, slight	ly moist.
211	14'	CL	Clay.	sandy	• 5T	avel	17. 5	ilt	y. v	егу	stiff	, moist,	brown.
4	19'	SM	Sand	'clean	+0.0					1			
			thin c						aver.	<u> </u>	medin	m dense,	moist, some
.91	21. 3.1										<u> </u>		
	24.1'		brown										locky, moist,
-0				·			·						
				CLASS	IFICAT			VIDI					
:PTH "op)		TYPE	SYMBOL	T	STURE		SAND G			1	DROCK	COLOR	COMMENTS
	••			Dry Moist	V. Moist Wet	Fine	Medium	Gravel	% Fines [-200]	Sandstone	Siltstone Clavstone		
<u>4</u> 1	50/11	Cal	CL			1-			1			Brown	
31	24/12	Cal	GL-SM	(C)	ODR	and	CIV			-			
141	2./12	Cal	SM	X		y y	X X	1.1.11E	20		-	Brown	·
1	50/6	Cal	Bedrock						- EV	-	1	Brown	·······
1	50/2	Cal	Bedrock	į				2		i			
0					-			1					

L - 2" I.D., 2.5" O.D. Drive Sampler SS. - Standard Split Screen ST. - Sheipy Tupe

PTH TO REDBOCK 19 Feet

DEPTH TO WATER TABLE AT BORING COMPLETION None OFTH TOWATED TABLE 13 - - - - -

į.

i

CONSULTING SOILS ENGINEERS 10600 W. Alameda Ave., Suite L-7 Lakewood, Colorado 80226

OBWG. 155. NAME Ash Pond, R. D. Nixon Power Plant	DATE STARTED 6/21/22
IOLE NO ENGINEER URN	
LEVATION 5448.9 COORDINATES 282.000	_ DATE COMPLETED _0/24/77
LEVATION 5448.9 COORDINATES 282,000 RILLING COMPANY Drilling Service RIG CME-55	— N <u> </u>
YPE OF BORING 4-inch continuous flight auger.	DRILLER <u>Max Muckey</u>

CLASSIFICATION OF LAYERS (UNIFIED	SOIL CLASSIFICATION EXETTAL

DE	PTH	SOIL								
Frem	То	SYMBOL	SOIL DESCRIPTION							
_0	211		Topsoil. Clay, sandy, silty, slightly moist, brown, roots.							
2"	18'	CL	Clay, very sandy, very silty, medium stiff to stiff, slightly moist to moist, brown, porcus in top 5 feet.							
18'	21'	<u>5M</u>	Sand, silty, medium dense, moist, fine sized, yellow brown and gray, some coarse sand and gravel sizes scattered in layer.							
21'	221	GC	Gravel, clayey, dense, moist, brown.							
2	24 '		Weathered Claystone-Sandstone, hard, moist, yellow brown and gray.							
241	29.11		Bedrock, Shale, very hard, slightly moist, dark gray.							
	-									

-					ISSI	FIC.	ATIC	N O	F IN	DIV	<u>וסו</u>	AL SA	MPLI	S		_	
PTH BLOW		TYPE	MOISTURE			s	SAND GRADING			BEDROCK		COLOR	COMMENTS				
				Dıy	Muist	V. Moist	Wet	Fine	Medium	Coarse	Gravel	% Fines (-200)	Sandstone	Siltstone	Claystone		
1	12/12	Cal	CL	2	X		İ	X				80	1	8		Brown	Very Silty
31	21/12	Cal_	CL.		_ X i			X		1-1-1-1 1-1-1-1 1-1-1-1 1-1-1-1 1-1-1-1 1-1-1-1 1-1-1-1 1-1-1-1 1-1-1-1 1-1-1-1-1 1-1-1-1-1 1-1-1-1-1-1-1 1-		20	1			Erown	
. 1	30/12	Cal	CL		X			X	,		1	80			·	Erown	
2' '	15/12	Cal	SM	3	X			X			. :	35				Yellow	
\bigcirc	50/5	Cal	Bedrock					:					8	»i		Brown Ergwn	
21	50/2	Cal	Bedrock		!	1		1 1	i					-			······
	I.D., 2.5" O.			1					i	ļ	i T						

- - 2" I.D., 2.5" O.D. Drive Sampler SS. - Standard Split Screen ST. - Shelby Tube

DEPTH TO WATER TABLE AT BORING COMPLETION None

HE,	HER	MAN COM	PANy	BO	ting Lü	G co	0600 W. Ala	co co civGINEERS meda Ave., Suite L-7 pod, Colorado 80226
DB NU.	155	NA	ME Ash	Pond, R. D	Nixon Power P	lant DAT	ESTARTED	6/25/77
OLE N	0	21 EN	IGINEER	CRN		DAT	-	- (/ar/an
LEVAT	FION	5464.1	17.0-	COORDINA	TES281,000		N2,22	5,000 F
RILLI	NG COMPA	NY	lling Se	rr <u>rvice R</u> IG	TES 281,000 CME-55	DRIL	LER Max	Muckey
YPE OI	F BORING_	4-1	nch cont	inuous fli.	ght auger.			
			CLASSIFI	CATION OF LAY	ERS (UNIFIED SOIL C	LASSIFICATIO	ON SYSTEM)	
Erom		SOIL SYMBOL			SOIL DE	SCRIPTION		
0	2"			<u>il, Clay, s</u>	andy, silty, s	lightly mo	ist, brou	m, roots.
2"	3'	CL	Clay,	sandy, sil	ty, stiff, sli	ghtly mois	t, brown.	
3'	5'		Weath	ered Bedroo	k, Shale, sand;	, blocky,	fracture	ed, slightly
		<u> </u>		, gray and				
5'	9.5'				ne-Shale, very	hard, blo	cky, frac	tured,
-	'	<u> </u>	eligh	tly moist,	gray brown.			
-0)	<u> </u>						
~		<u> </u>						
					·			······································
	ļ						_	
		_						
				CLASSIFICATIO	N OF INDIVIDUAL SA	MPLES		
IPTH Top)	LOW	TYPE	SYMBOL	MOISTURE	SAND GRADING	BEDROCK	COLOR	COMMENTS
1001								
				loist	ine eclium oarse ravel fines 200)	ston		
				Dry Moist V. Moist Wet	Fine Medium Coarse Gravel (200)	Sandstone Siltstone Claystone		
41	48/12	Cal	Bedrock				Brown	
91 1	50/5	Cal	Bedrock		, stoonji Banuy		Grav	
							GLAY	
		-				1		8

L - 2" I.D., 2.5" O.D. Drive Sampler SS. - Standard Split Screen ST. - Shelby Tube

ł

;

+ I

1

1 1

: 1 i

. .

4

· •

•

1

1 1

1 1

DEPTH TO WATER TABLE AT BORING COMPLETION None

- [

•-

THE FISHERMAN COMPANY	BORING LUG	Lakewood, Colorado 80226
OB NO. 177 . NAME ASh	Pond, R. D. Nixon Power Plant	DATE STARTED 6/25/77
IOLE NO. 77-22 ENGINEER	CRN	DATE COMPLETED6/25/77
LEVATION 5455.8	COORDINATES 282,000	N2,226,000
RILLING COMPANY Drilling	er erviceRIGCME-55	NE
YPE OF BORING 4-inch con	tinuous flight auger.	DITELERINGAUCAEY

DE	PTH	SOIL	CLASSIFICATION OF LAYERS (UNIFIED SOIL CLASSIFICATION SYSTEM)
rom	To	SYMBOL	SOIL DESCRIPTION
0	2"		Topsoil, Clay, sandy, silty, slightly moist, brown, roots.
2"	14'	CL	Clay, sandy, silty, medium stiff to stiff, slightly moist to
			moist, water laid - layers - calcareous spots (Gypsum).
41	191	SM	Sand, silty, redium dense, moist, yellow brown to gray.
91	21'	SC-GC	Sand and Gravel, clayey, dense, moist, brown.
1'	23'		Weathered Shale, fractured, hard, blocky, moist, gray brown.
0	24.51		Bedrock, Shale-Claystone, very hard, thin, sand layers, dark gray to brown.
			0
		3	

			1	1		ON OF INDIV	IDUAL SA			
FTH BLOW	TYPE	SYMBOL	MO	ISTURE	SAND G	RADING	BEDROC	K COLOR	COMMENTS	
	,			Dry Moist	V. Moist Wet	Fine Medium Coarse	Gravel % Fines (-200)	Sandstorie Siltstone	Claystone	
1	11/12	Cal	CI	x		x :	80		Brown	
-	33/12	Cal	CL	<u> </u>	<u> </u>	X X	o: 80	13 SI	Brown	Calcareous
•	24/12	CAL	<u>SM</u>	X		_x	40_		Yellow	
	50/11	Cal	SC-aC	X	(i)	X X X	X 25	10	Brown Brown	······································
4	50/6	Cal	Bedrock	<u> </u>		X	60	11	Grav	·
-+		<u> </u>		1				i i		
	· · ·			- 3	1	1 de 1	31 I I I I			

SS. - Stanoard Split Screen ST. - Sheiby Tube L – 2" I.D., 2.5" O.D. Drive Sampler

PTH TO BEDBOCK 23 Feet

DEPTH TO WATER TABLE AT BORING COMPLETION None

HE FI	cHER	MAN	PANy	BOI	RING LO	G ^{co}	0600 W. AI	SOILS ENGINEER ameda Ave., Suite L- vood, Colorado 8022						
Bh	155	NA	ME Ash I	Pond, R. D.	Nixon Power Pl	ant DAT	E STARTED	.6/22/77						
LE N	0. <u>77-</u> /	23 EN	GINEER	CRN		D.4.7		(/22/00						
EVA1		<u>5455.4</u>		COORDINA	TES283.0 CME-55	00	N 2	,226,000						
41LLIA	NG COMPA	NYDr	illing S	ervice_RIG	CME-55	DRIL	LERMaວ	C Muckey						
'PE OI	FBORING	4-	inch cor	tinuous fl:	zht auger.									
_			CLASSIF	ICATION OF LA	ERS (UNIFIED SOIL (ON SYSTEM							
	РТН	SOIL SYMBOL			SOIL DESCRIPTION									
rom	<u> </u>	3 T WIBUL						·						
0	211	_	Topsoi	1, Clay, se	andy, silty, da	rk brown t	o tan, 1	roots.						
				_										
211	21	CL	Clay,	silty, sand	ly, stiff, dry,	tan to br	 . תשסי							
21	9.51		Bedroc	k. Glavetor	ne, Shale, frac	tured ble								
-			brown.		io, onare, irac	ourer, pto	cry, gra	V, UIIVE,						
		_	UI UNIL.					-						
					· · · · · · · · · · · · · · · · · · ·									
						··								
-				<u> </u>				5						
-														
U								······································						
					-									
		1.1	1				_							
		1			_									
-														
							-							
			<u> </u>											
		_												
				CLASSIFICATIO	N OF INDIVIDUAL SA	MPLES								
PTH	WOJE -	TYPE	SYMBOL	MOISTURE	SAND GRADING	BEDROCK	COLOR	COMMENTS						
(90	COUNT													
				Dist	E a _ S-	Sandstone Siltstone Claystone								
				Dry Moist V. Moist Wet	Fine Medium Coarse Gravel & Fines (-200)	Sandstone Sultstone Claystone								
				·	<u>μ Σ Ο ΙΟ χ~</u>									
41	50/10		layston			X X	Brown &	Gray						
9	50/5	Cal	Clayston	e X	· · ·	X X	Brown &	Gray						
		_					╀───┤-							
-							┼──┼							
()														
							┟───┼							
— İ					· · · · · · · · · · · · · · · · · · ·	· · · ·	<u> </u>							

_ - 2" 1.D., 2.5" O.D. Drive Sampler 5

SS. - Standard Split Screen ST. - Shelby Tube

NEPTH TO WATED TABLE 16

DEPTH TO WATER TABLE AT BORING COMPLETION None

-

TTO ANIA THELE

BUNING LUG

10600 W. Alameda Ave., Suite L-7 Lakewood, Colorado 80226

	. 77-	24	ME Ash Pond, R. D. Nixon Po	wer Plant	DATE STARTED 6/22/77
	U. <u></u>	<u> </u>	INEER ORN		DATE COMPLETER 6/22/77
DILL		427.2 Cus	tom Auger COORDINATES	284,000	NN
			Trang dervice nig0/2	22	DRILLER Max Muckey
TPEU	F BORING	4-1	nch continuous flight auge:	C	
	РТН		CLASSIFICATION OF LAYERS (UNIFIE	D SOIL CLASS	FICATION SYSTEM)
From	To	SOIL SYMBOL		SOIL DESCRIP	TION
0	211		Topsoil, clay, sandy, silt	y. roots.	
211	741	CL		tiff, gra	velly lavers, dry to slightly
14 '	15'	GC	Gravel, clayey, dense, sli	ghtly moi:	st, brown.
151	171		Weathered Shale, medium ha	urd, slight	tly moist, brown.
12'	19.1'		Bedrock, Shale, some sands	tone layer	CS, gray.
$\underline{\mathbb{U}}$					
_					· · · · · · · · · · · · · · · · · · ·

EPTH Top) .	BLOW COUNT	TYPE	SYMBOL	MOIS	TURE	SAN	D GR	DIN	G	BE	DRC	ICK	COLOR	COMMENTS
	,			Dry Moist	V. Moist Wet	Fine Medium	Coarse	Gravel K Finar	(-200)	Sandstone	Siltstone	Claystone		
41	30/12	Cal	CL	X		x z	ct		80	The second second second second second second second second second second second second second second second se			Brown	
31	22/12	Cal	CL	X	2	X 2			70			-	Gray-E	
.41	50/3	Cal	CT.	x	2	X y	5	4	60				Grav-F	
<u>9'</u> '	50/2	Cal	Claysto	ne-Sar	idstor	e) 1				I		<u>arav=</u>	<u>99 Wot</u>
\frown				1		1			=					
\square					19	i I	!							
					7	1	1			Î				
			=	1 1			-			ł		—		

PTH TO BEDROCK 17 Feet

. – Standard Split Screen ST. – Sheiby Tube

DEPTH TO WATER TABLE AT BORING COMPLETION NOTE

CONSULTING SOILS ENGINEERS 10600 W. Alameda Ave., Suite L-7 Lakewood, Colorado 80226

38 m.	155	NAM	Ash P	ond, R.	D.	Nix	on P	owei	r Pla	int	_ [DATE	STARTED	6/22/77
OLE NO). <u> </u>	25 ENG		CRN							C		COMPLET	ED_6/22/77
LEVAT		5473.9			INA	res_	2	35,0	000			. N	2,	226,000 E
RILLIN	G COMPA	Cust NY_Dril	om Aure: ling Se	r rvice	RIG			CM	E-55		ם	811 I	FR Max	Muckey
			-	inuous f								• • • • •		
				CATION OF						LASS	FIC)
DEP	тн	SOIL												
From	To	SYMBOL						so	IL DES	SCRIP	TION	4		
0	Zu		Topsoi	L, Clay,	50	ndu		. +		_				
			100501	<u>Li Oraji</u>	34	<u>, 1101 y</u>	<u></u>		<u>ur</u> y	<u> </u>	1 45	5 11	<u>JUCB.</u>	
										<u> </u>				
2"	18.51	CL											gravel	, slightly
			moist,	brown,	80 2	e c	alca	reou	18 st	rea!	ks.			
			Gravel	ly 13' -	14	ŧ								
18.5	241	SC	Clay a	nd Sand	lay	ere	d. s	tiff	f. gr	ay	and	bro	own.	
									<u> </u>					
	35 51		Pestino	nod Eodr			1		- 5h	010		^	770170	l mixed
<u>24</u> 1	25.5'		Heathe.	red bear	OCK	. <u>,</u> (Tays	COUL	-, 5u	are	9 11	aru	, ⁵ l'ave	l mixed.
-0														
23/	29.2'		Bedroci	k, Clays	ton	θ,	hard	, `oz	cown,	or	ang	e, :	iron st	ains.
			-											
· · ·														
						_								
					<u> </u>									
								_						
		-		CLASSIFIC.	-		-	-	1000	1			1	
IEPTH (Top)	· BLOW		SYMBOL	MOISTU	36	S	AND G	RAD	ING	86	DRO	CK	COLOR	COMMENTS
(100)	COUNT				1				-	2		30		
1				Dry Muist V. Moist			Medium	-	Fines -200)	Sandstone	Siltstone	Claystone		
		1 1		Dry Moist V. Mc	Wet	Fine	Mediun Coarse	Gravel	% Fi	and	ilts	Clay		· · · · · · · · · · · · · · · · · · ·
	1 . / 7 . 7	-				-		1		0.	()		-	
41	44/12	Cal	CL	X	-	X	X	1	08	-			Erown	
-9	50/11	Cal	<u>CL</u>	X	1	X	X		1 30	-			Erown	
141	36/12		CL	X	1	X	XX	X					Brown Brown	
10	50/7	Cal	CI.	<u></u>		X	-X	v	60		-		Larown_	Gravel & Clay-
0	50/7	Cal		X	1			-	QU				U.S. 10	STCD8 X1X8C
	50/3	Cal		X	1			1	1		-			
					1	1	-	1	R.		_			
A1 - 2	10 25		Sampler	SS Stanga	rd Sp	dit Se	reen	ST	- Shei	hy Tu	ihe	-		

DEPTH TO WATER TABLE AT BORING COMPLETION None

DEPTH TO WATER TABLE 15 DAYS AFTER COMPLETION None

FI	ISHER	COM	PANy	/ B					LC					Alama Akewoo	DILS ENGINEE eda Ave., Suite d, Colorado 803
	//	N	AME <u>As</u> NGINEER_	<u>h Pond, F</u>	<u>?.</u>]	<u>D. N</u>	ixor	<u>1</u> Pc	Wer	<u>P1a</u>	<u>nt</u>	_ D4	TE STAR	TED	6/22/77
LEVA	TION 5		NGINEER_	_CRN				_				_ DA			6/22/77
		<u>400.2</u>	ISTOM AL	iger COOR	IDIN	ATES			<u>284</u> ,	000					
												. DRI	LLER	Max M	uckey
	F BURING						<u>au</u>	<u>rer</u>							
DE	РТН	SOIL	I CLASSI	FICATION O	FLA	YERS		IFIE	D SOIL	CLA	SSIF	ICAT	ION SYST	'EM)	
From	To	SYMBO	L					5		ESCR	RIPTI	ON			
0	211									_	_				
			0pso	<u>il. Clav</u>		andy	<u> </u>	<u>ilt</u>	<u>y, d</u> a	ark	bro	WII.	roots	•	
2"	91				-	-		_							
<u><u> </u></u>	<u> </u>	CL	Clay,	sandy to	v c	ery	Sand	y,	ver	r st	111	, 5	ravell;	y lave	rs, silty,
			sligh	tly moist	t,	brow	n ar	ad	rav.						
_			Porou	s in uppe	er	5 fe	et.			1		-			
										-	-				
01	14.3		Bedro	k. Shale		hand	÷ -,				1			-	
				ck, Shale	<u> </u>	acts to	<u>*</u>	aci	urec	, D	100.	ky j	<u>gray</u> b	prown,	sandy.
		1.1.7.7			-	_	-	-		_					
-				-		_	_	-	_		-	_	-		
0		_		<u> </u>											
			<u> </u>	··			_								
											·				
										_					
														·	
			<u>+</u>									<u> </u>			
	100		╆┈┈╸											_	
-			·						_	_					
		·	<u> </u>				_								
1				CLASSIFICA	TIO	NOF	INDI	VIDU	ALSA	MPL	ES		1.1.1		
TH	BLOW COUNT	TYPE	SYMBOL	MOISTUR	E	SA	ND GI	RAD	ING	88	DRC	CK	COLOR		
			(Constant)		5		T	1				[COMMENTS
		1 1		ist i					×	Saudstone	20	Claystone		1	
		1 1		Dry Moist V. Moist	Wel	Fine	Coarse	Gravel	% Fines (-200)	Idst	Siltstone	yste		4	
				QIZ >	3	111		0	32-	Sal	Silt	Cia			
	24/12	Cal	CL	X	_	x	(Erown		
	50/9		layan			;	4	:		-	X	7	Grav 3	have	
-	50/4	Call	laystr			1	1			1		-	andy -	Town	
-'-	-			1.1			1							-	
0-								1			1				
4				1.1.1	_	Q	1	1		1.1	1				
					-	1	4		1		1				
				Ê î e	1		1 1	-				-			
- ∠° I.	D., 2.5" O.	D. Drive Sa	mpier St	S Stangard	Solit	Scree	n	ST	Saerb	v Tue	-	-			_

Sneiby Tube

DEPTH TO WATER TABLE AT BORING COMPLETION None

••

DEPTH TO WATER TABLE 16 -----

THE	LED	COM _F	
		COMF	ANy
	- 55	-	

BORING LUG

CHUNEERS 10600 W. Alameda Ave., Suite L-7 Lakewood, Colorado 80226

JOL J. 199 NAME	Ash Pond, R. D. Nixon	Power Plant	DATE STARTED 6/25/77
ENGINE ENGINE	ER_URA		
ELEVATION5467_2	COORDINATES	282,499	DATE COMPLETED6/25/77 N2,224,955E DRILLERMax _Muckey
DRILLING COMPANY	ing Service RIG	CME-55	DBULLER Vax Muckey
TYPE OF BORING 4-inc	<u>h continuous flight a</u>	uger.	

	РТН		CLASSIFICATION OF LAYERS (UNIFIED SOIL CLASSIFICATION SYSTEM)
From	70	SOIL SYMBOL	SOIL DESCRIPTION
			2" Topsoil typical, none at hole location.
0	18'	CT	Clay, sandy, silty, medium stiff to stiff, slightly moist to moist, brown. Sandier belo 14 feet.
18'	23'	SM	Sand, silty, clayey, medium dense, gravelly, moist, brown 20' - 22' gravelly Free water in sample at 19 feet.
	24.5'		Bedrock, Claystone-Shale, very sandy, very hard, moist, brown and gray.

PTH op)	BLOW COUNT	TYPE	SYMBOL	MOISTURE	SAND GRADING	BEDROCK	COLOR	COMMENTS
				Dry Muist V. Muist Wet	Fine Medium Coarse Gravel & Fines (200)	Sandstone Siltstone Claystone		
	31/12	GAT	CT.	x	x 80		Brown	Calcareous
21	50/11	Cal	CL	X	X 80	1 1	Brown	Porous
-	25/12	Cal	CT	1	X 70	100000	Prown	
3 . 1	24/12	Cal	SM	L X	X X X X 40		Brown	
	50/5	Cal	Bedrock	X	X 60		Brown	
4		-				n - 1		
	-				Co. M. Co			

- 2" I.D., 2.5" O.D. Drive Sampler SS. - Standard Split Screen ST. - Snelby Tube

PTH TO BEDROCK 23 Feet

DEPTH TO WATER TABLE AT BORING COMPLETION None DEPTH TO WATER TARLE 13

Yone

CONSULTING SOILS ENGINEERS 10600 W. Alameda Ave., Suite L-7 Lakewood, Colorado 80226

JOL J. <u>155</u> N	AME Ash Pond, R. D. Nixon Pow	er Plant DAT	E STARTED 6/25/77	
HOLE NO. <u>77-28</u> E	NGINEER.CRN			
ELEVATION 5467	La COORDINATES 282 Custom Auger Drilling Service RIG CM	,000	2,225,000	
DRILLING COMPANY	Drilling Service RIGCM	2-55 DRILI	ER Max Muckey	- 5
TYPE OF BORING	4-inch continuous flight auger	<u> </u>		_
	CLASSIFICATION OF LAYERS (UNIFIED	SOIL CLASSIERATIC		

DE	РТН	SOIL	CLASSIFICATION SYSTEM
From	То	SYMBOL	SOIL DESCRIPTION
_0	211		Topsoil in area, not at hole.
211	231	CL	Clay, sandy, silty, stiff to very stiff, slightly moist to moist, brown, calcareous
			Dark gray below 14 feet
			Criginal ground surface at one time at 14 feet Porous in 19-foot drive.
31	251	GM-GC	Gravel, sandy, silty to clayey, dense, moist, brown.
\mathcal{O}	281		Weathered Bedrock, Claystone, sandy, medium hard, slightly moist, gray brown.
1			More and a strown.
8.	29.21		Bedrock, Claystone-Shale, sandy, blocky, fractured, gray-brown.
	i		

CLASSIFICATION OF INDIVIDUAL SAMPLES EPTH BLOW TYPE SYMBOL MOISTURE SAND GRADING **BEDROCK** COLOR COMMENTS Top) COUNT Sanulstone V. Moist Siltstone Claystone Medium Fines 200) Coarse Gravel Moist Fine Dζ Wet 8-÷ 41 27/12 Cal CL Х Х 80 Brown Calcareous 01 22/12 Cal C1 X Ŷ Erown Dark Gray Calcareous, 80 SUR <u>_4</u> " <u>50/11</u> Cal CI. Х x <u>80</u> 91 25/12 Cal Y X CT 30 Ŷ. Brown Porous 45/12 Cal GM X Х . XX 20 Х Brown 50/3 Cal Bedrock

VL - 2" I.D., 2.5" O.D. Drive Sampler

SS. - Standard Split Screen ST. - Shelpy Tube

DEPTH TO WATER TABLE AT BORING COMPLETION None

DEPTH TO WATER TABLE 13 DAVE A STER COMPLETION NOR P

THE	SHER	MAN COM	PANy	BO	Ring LC)G	10600 W. /	IG SOILS ENGINEE Alameda Ave., Suite L ewood, Colorado 802
	·	N	AME <u>Ash</u> Ngineer	Pond, R. I	D. Nixon Power	<u>Plant</u>	DATE STARTE	0 <u>6/29/77</u>
					ATES 279.00	00	DATE COMPLE	TED 6/29/77
RILLI	NG COMPA		istom Au	ser Sonvice Bl	ATES 279,00 G CME-55	;		
YPE O	F BORING	4-	inch co	ntinuous fl	ight auger.		DRILLER Mar	X_MUCKEY
		_	CLASSI	FICATION OF LA	YERS (UNIFIED SOIL	CLASSIFI	CATION SYSTEM	A1
DE From	PTH To	SOIL SYMBO				ESCRIPTIC		
	10		-					a Car water
			-					
-			-					
			_					
-			1					
_							1.2.2.2	
-			1			100 miles		
_								
						-		
0					1			
\bigcirc			1.					
		1.1						
				CLASSIFICATIO	N OF INDIVIDUAL S	AMPLES		
PTH op)	BLOW	TYPE	SYMBOL	MOISTURE	SAND GRADING	SEDRO	CK COLOR	COMMENTS
1 100	COUNT							COMMENTS
1		1		oist		Sandstone Sultstone	Claystone	
[Dry Muist V. Maist Wet	Fine Medium Coarse Gravel (200)	Sandstone	laysi	
4 1	35/12	Cal	SM					
1.			Bedrock	<u> </u>	X X X X 20		Brown	
			<u>pearack</u>					<u> </u>
I.					;			
0								
1					· · · · · · · · · · · · · · · · · · ·			
ļ,						1	- 1 1	

PTH TO BEDROCK 51 Feet

DEPTH TO WATER TABLE 10 DAVE AFTER COMPLETION 40.5

0	SHER	MAN COM	PANy		RING L		C	10600 W.	ING SUILS ENGI Alameda Ave., S kewood, Coloradi	uite L-7
-	155	N	AME Ash	Pond, R. D	Nixon Powe	r Plant		TE START	ED_ 7/8/77	
			NGINEER	CRN					ETED <u>7/8/77</u>	
EVA		5469	1	COORDIN	ATES 290	.736			,226,312	<u> </u>
IILLI	NG COMPA	NY_Dr	illing S	er er ervice RI	GCME	-55			Max Muckey	E
'PE C	FBORING	4-:	inch con	tinuous fli	Lght auger.				an Muckey	
			CLASSIF	ICATION OF LA	YERS (UNIFIED S	OIL CLAS	SIFICATI	ON SYST		
DI rom	РТН То	SOIL SYMBO	1							
						IL DESCR				
0	3"		Topso:	il, Clay, s	andy, silty,	sligh	tly mo	ist. de	irk brown, ro	
								<u></u> , uc	un prown, ro	ots.
311	41	CL	Clav.	sandy, sil	ty pties -	74-547				
					ty, stiff, s	TTEULT	y mois:	t, brow	m	-
41	16 '	SP-SM	1 2							
-	10	21-21		clean to E	ilty, medium	dense	, sligh	itly mo	ist, tan and	1.17
			crown,	fine sand	with coarse	and p	ea grav	tel siz	24	
			Horizo	ntally lay	ered with th	in lav	ers of	clay	more clay fr	
			10' -	16 .				uray,	more clay fr	мощ
		11								
	1000	-								
0	30	GP-GC		, saray, c	lean to clay	ey, med	lium de	nse, s	lightly moist	+
0	301	GP-GC	brown.		lean to clay	ey, meć	lium de	<u>nse, s</u>	lightly mois	ŧ.,
0	301	<u> </u>	brown. Very c	lean from 1	17' - 30'		lium de	nse, s	lightly mois	*
0	30	<u> </u>	brown. Very c	lean from 1	17' - 30'		lium de	<u>nse, s</u>	lightly mois	ŧ,
0	301	<u> </u>	brown. Very c	lean from 1			liva de	<u>nse, s</u>	lightly mois	t,
		<u> </u>	brown. Very c Water	lean from : at 21 feet	17' - 30' in 24-foot (drive.		_	lightly mois	t,
	30	_ GP-GC	brown. Very c Water	lean from : at 21 feet	17' - 30'	drive.			lightly moist	
0		<u> </u>	brown. Very c Water	lean from : at 21 feet	17' - 30' in 24-foot (drive.				
		_ GP-0C	brown. Very c Water	lean from : at 21 feet	17' - 30' in 24-foot (drive.				
		_GP-GC	brown. Very c Water	lean from 1 at 21 feet 2. Shale, 1	17' - 30' in 24-foot (very hard, se	drive.	Oist,			
	34.51		brown. Very c Water Bedroc	lean from : at 21 feet 2. Shale, 7 CLASSIFICATIO	17' - 30' in 24-foot (drive.	Oist,			
ТН	34.51 BLOW	GP-GC	brown. Very c Water	lean from 1 at 21 feet 2. Shale, 1	17' - 30' in 24-foot (very hard, se	drive.	Oist,		ray or dark :	;===;
ТН	34.51		brown. Very c Water Bedroc	lean from : at 21 feet 2. Shale, 7 CLASSIFICATIO MOISTURE	17' - 30' in 24-foot (rery hard, se	drive. andy, m L SAMPL	es DROCK	blue gr	nay on dark :	
ТН	34.51 BLOW		brown. Very c Water Bedroc	lean from : at 21 feet 2. Shale, 7 CLASSIFICATIO MOISTURE	17' - 30' 1n 24-foot ery hard, se N OF INDIVIDUA SAND GRADIN	drive. andy, m L SAMPL	es DROCK	blue gr	ray or dark :	;===;
тн	34.51 BLOW		brown. Very c Water Bedroc	lean from : at 21 feet 2. Shale, 7 CLASSIFICATIO MOISTURE	17' - 30' 1n 24-foot ery hard, se N OF INDIVIDUA SAND GRADIN	drive. andy, m L SAMPL	es DROCK	blue gr	ray or dark :	;===;
ידא אדי ים)	34.51 BLOW COUNT	TYPE	brown. Very c Water Bedroc	lean from : at 21 feet 2. Shale, 7 CLASSIFICATIO	17' - 30' 1n 24-foot ery hard, se N OF INDIVIDUA SAND GRADIN	drive.	es DROCK	blue gr	ray or dark :	;===;
ТН р)	34.51 BLOW COUNT	TYPE	brown. Very c Water Pedroc SYMBOL	lean from : at 21 feet 2. Stale, 7 CLASSIFICATIO MOISTURE 150 W 7 MOISTURE	DN OF INDIVIDUA SAND GRADIN	drive. andy, m L SAMPL	es DROCK	COLOR	ray or dark :	;===;
ТН р)	34.51 BLOW COUNT 10/12 13/12	TYPE Cal Cal	brown. Very c Water Pedroc SYMBOL SYMBOL	lean from 1 at 21 feet 2. Shale, 1 CLASSIFICATIO MOISTURE	DN OF INDIVIDUA SAND GRADIN BULL SAND GRADIN BULL SAND GRADIN BULL SAND GRADIN	L SAMPL	es DROCK	COLOR Prown	COMMENT	;===;
ТН р)	BLOW COUNT 10/12 13/12 15/12	TYPE Cal Cal Cal	brown. Very c Water Pedroc SYMBOL SYMBOL SP-SM SM CL-SM	lean from 1 at 21 feet 2. Shale, 1 CLASSIFICATIO MOISTURE AG X S S	DN OF INDIVIDUA SAND GRADIN BUIL SAND GRADIN SAND GRADIN SAND GRADIN SAND GRADIN SAND GRADIN SAND GRADIN SAND GRADIN	L SAMPL IG BE	es DROCK	COLOR Erown	COMMENT	;===;
ТН р)	34.51 BLOW COUNT 10/12 13/12 16/12 27/12	TYPE Cal Cal	brown. Very c Water Pedroc SYMBOL SYMBOL	lean from : at 21 feet 2. Shale, 1 CLASSIFICATIO MOISTURE 3. MOIST	DN OF INDIVIDUA SAND GRADIN BUIL SAND GRADIN SAND GRADIN SAND GRADIN SAND GRADIN SAND GRADIN SAND GRADIN SAND GRADIN	L SAMPL IG BE Sandy, m IG BE Sandy IG BE Sandy IC I IC I IC I IC I IC I IC I IC I IC	es DROCK	COLOR Drown Drown Drown	COMMENT	;===;
ТН р) ,	BLOW COUNT 10/12 13/12 15/12 27/12 46/12	Cal Cal Cal Cal Cal Cal Cal Cal	brown. Very c Water Pedroc SYMBOL SYMBOL SP-SM SM SL-SM SP GP	lean from 1 at 21 feet 2. Shale, 1 CLASSIFICATIO MOISTURE AG X S S	DN OF INDIVIDUA SAND GRADIN BUIL SAND GRADIN SAND GRADIN SAND GRADIN SAND GRADIN SAND GRADIN SAND GRADIN SAND GRADIN	L SAMPL IG BE Samuel Samuel Samu Samuel Samuel S Samuel Samuel S	es DROCK	COLOR COLOR Brown Brown Erown	COMMENT	
ТН р) ,	34.51 BLOW COUNT 10/12 13/12 16/12 27/12	Cal Cal Cal Cal Cal Cal Cal Cal	brown. Very c Water Pedroc SYMBOL SYMBOL SP-SM SM CL-SM SP	lean from : at 21 feet 2. Stale, 7 CLASSIFICATIO MOISTURE 20 20 30 30 30 30 30 5 5	DN OF INDIVIDUA SAND GRADIN UNIPAN SAND GRADIN UNIPAN SAND GRADIN UNIPAN SAND GRADIN SAND GRADIN SAND GRADIN SAND GRADIN SAND GRADIN SAND GRADIN	L SAMPL IG BE Solution IG BE Solution S	es DROCK	COLOR COLOR Prown Brown Erown Erown	COMMENT	;===;
ТН	BLOW COUNT 10/12 13/12 15/12 27/12 46/12	Cal Cal Cal Cal Cal Cal Cal Cal	brown. Very c Water Pedroc SYMBOL SYMBOL SP-SM SM SL-SM SP GP	lean from : at 21 feet 2. Stale, 7 CLASSIFICATIO MOISTURE 20 20 30 30 30 30 30 5 5	DN OF INDIVIDUA SAND GRADIN UNIPAN SAND GRADIN UNIPAN SAND GRADIN UNIPAN SAND GRADIN SAND GRADIN SAND GRADIN SAND GRADIN SAND GRADIN SAND GRADIN	L SAMPL IG BE Solution IG BE Solution S	es DROCK	COLOR COLOR Brown Brown Erown	COMMENT	

HOLDING POND AT PLANT

:⊏Ho 10600 W. Alameda Ave., Suite L-7 Lakewood, Colorado 80226

• <u>155</u> NAME <u>Ash Pond</u> , R. D. Nixon Power Plant	DATE STARTED7/8/77
IOLE NO. <u>77-38</u> ENGINEER <u>CRN</u>	DATE COMPLETED 7/8/77
LEVATION 5467.2 COORDINATES 290,336 RILLING COMPANY Drilling Service RIG CME-55	N2,226,312 =
RILLING COMPANY Drilling Service RIG CME-55	- DRILLER Max Muckey
YPE OF BORING 4-inch continuous flight auger.	

			CLASSIFICATION OF LAYERS (UNIFIED SOIL CLASSIFICATION SYSTEM)
	PTH	SOIL	
from	To	SYMBOL	SOIL DESCRIPTION
0	3"		Topsoil, Clay, sandy, silty, slightly moist, brown, roots.
3"	4.5'	CL	Clav, sandy, silty, medium stiff, slightly moist, brown and tan.
4.5	91	SP-SM	Sand, clean to silty, medium dense, slightly moist, brown.
91	19.5'	CL	Clay, sandy, stiff, thin sand layers, horizontal layers, slightly
			moist, dark brown and brown.
L'O	231	<u>GP-GC</u>	Gravel, sandy, clean to clayey, medium dense, moist, brown,
\sim			Water at 21 feet in 24-foot drive.
231	25!	SM-CT.	Sand, fine, silty, clayey to clay sandy, dark gray (mud), very soft, wet.
251	29.51	SP	Sand, clean, gravelly, medium dense, wet, brown.
29.5	30'		Bedrock, Shale, sandy, hard, dark gray to blue gray.
			CLASSIFICATION OF INDIVIDUAL SAMPLES
EPTH	BLOW	TYPE	SYMBOL MOISTURE CAND CRADING DEPROV

ЕРТН Тор) .	BLOW COUNT	TYPE	SYMBOL	MOISTURE	SAND GRADING	BEDROCK	COLOR	COMMENTS
				Dry Moist V. Moist Wet	Fine Medium Coarse Gravel % Fines (200)	Sandstone 1 Siltstone Claystone		
41	13/12	Cal	SP	x	X X 5		Brown	
91	21/12	Cal		S	x 90		Brown	
<u></u>	19/12	Cal	CL.	X	X 80		Ercwn	
31	15/12	Cal I	SP	X .	X X X X 5		Brown	
4	12/12	Cal	SP	X	XXXXX		Brown	
0	25/9,25/	3 Gal	SP one	and, bearoo	t other			
-								
_				1 1 1		4 I.		

L - 2" I.D., 2.5" O.D. Drive Sampler SS. - Standard Split Screen ST. - Shelby Tube

DEPTH TO WATER TABLE AT BORING COMPLETION _21 !

DEPTH TO WATER TABLE 1 DAYS AFTER COMPLETION 21.5"

from points higher on the slope, with the main mechanisms of transport being (1) transport by stormwater sheetflow, (2) fall via erosional undermining, and (3) slow downslope creep under the influence of gravity.

Soil types on the site fall into three

general groups, described on a preliminary basis as follows:

- Clayey sands and gravels, consisting mainly of Verdos Alluvium and colluvium derived from it;
- II. Lean, silty clays, including residual soils developed on Pierre Shale, clayey colluvium, and Piney Creek Alluvium;
- III. Weathered Pierre Shale; and

IV. Relatively unweathered Pierre Shale.

These materials have been briefly described, and their properties will be subsequently discussed as they affect the proposed disposal site. The occurrence of these soil types in the boreholes is summarized in Table III. Thicknesses of Soil Types in Boreholes

These are depth intervals, not thicknesses (based on comparison to actual logs for 77-14 and 77-25

	Boring	Surface				
Ц	NO.	Elev.	Type I	Type II	Type III	Type IV
	LD-1	5541			0-6'	6'
11:202	LD-2	5569	0-3 '	3-7.5'	7.5-16.5'	16.5'
	LD-3	5560		0-1'	1-6.5'	6.5'
	LD-4	5519	Thin	0-1'	1-6.5'	6.5'
Π	LD-5	5504		0-17'	17-22'	22 '
ш	LD-6	5509		0-1.5'	1.5-6'	6'
	LD-7	5519		0-12'	12'	Unknown
	LD-8	5511	Thin	0-3'	3'	Unknown
P	rilled by	CH2M Hill				
U	в-10	5523		0-2 '	2-9'	9'
П	B-11	5526		0-14'	14'	Unknown
	B-12	5534		0-4 '	4-6.5'	6.5'
ΞŤ.	B-13	5525		0-15'	15-19.5'	19.5'
	B-14	5487	17-19.5'	0-17'	19.5'	Unknown
Π	B-15	5514 .		0-15'	15'	Unknown
Ц. - Д1	illed by	The Fisherman Co.	040			
	77-14	5475	3.5-6.5'	0-3.5',	16'	Unknown
с.)	77-25	5474		8-24 ¹⁶	24-25.5'	25.5'
	5 A					

In holes drilled by firms other than Lincoln-DeVore, soil type classifications and depths are based descriptions furnished by those firms, and Lincoln-DeVore cannot warranty their accuracy.

Section and the state

ALL MARTINE TO PARTY AND A PARTY

HALE	EY & AL	DRICH,	INC.		TE	ST BORING R	EPORT		Boring No. B-16	
			City	ona Ranch D of Colorad Drilling drich D-50	Dam Seepage Io Springs	Analysis			Job No. 20194-000 Page No. 1 of 1 Location: See Plan Elevation: See Plan	
GROU	NDWATE	R		DEPTH TO:		Date Start: 3/24/94 Date Finish: 3/24/94				
Date 3/24/94	Hrs A Com 4 V		Water NE	Bottom of Casing N/A	Bottom of Hole 14.3'	Түре Size ID	Type HSA 4-1/4 in.	Туре S 1 3/8 in.	Driller: J. Shaw Prepared By: M. Gans	
						Hammer Wt Hammer Fall		140 lb. 30 in.		
Depth in Feet	Casing Blows Per Foot	Sampler Blows Per 6 Inct	Sample Numbe			F	IELD CLASSIFICATI	ON AND REM	ARKS	
- 5		50/4"	<u>S1</u>	14/14.3	Brown, o 14.0 SHALE Very hard	LAY (CL) dry, mostly clay d, brown, dry, r	mostly shale, little g	ypsum.	- FINE ALLUVIUM	
BLOWS/ 0 - 4 4 - 10		DENSIT VERY LOO LOOSE	OSE 0	LOWS/FT.	CONSISTE VERY SOF SOFT	FT C - CA	LE IDENTIFICATION	WD - W	DWATER ABBREVIATIONS HILE DRILLING OT ENCOUNTERED	

HALE	Y & AL	DRICH,	INC.		TE	ST BORI	NG REPO	RT			Boring No. B-17	
			Cit	inna Ranch D ty of Colorad DI Drilling edrich D-50	Dam Seepage lo Springs	Analysis	S	. L			Job No. 20194-000 Page No. 1 of 2 Location: See Plan Elevation: See Plan	
GROUN	DWATE	R		DEPTH TO:				Auger Type	Sam Typ		Date Start: 3/24/94	
Date	Hrs A Com		Water	Bottom of Casing	Bottom of Hole	Туре		HSA		s	Date Finish: 3/24/94 Driller: J. Shaw Prepared By: M. Gans	
3/24/94	W I	/D	17.0'	N/A	24.4'	Size ID		4-1/4 in.		1 3/8 in.	Frepared by: M. Gans	
3/25/94			13.9' 14.0'			Hammer Hammer			-	140 lb. 30 in.		
Depth	Casing Blows	Sampler Blows Per 6 Incl	Samp				FIELD	CLASSIFICA	TION A	in the	ARKS	
- 10						LAY (CL) dry, most					- FINE ALLUVIUM	
15 -	-	4 4 4	S1	<u>14.0</u> 15.5	LEAN CL Medium		tiff, brown	, moist, mos	tly clay,	trace fine	e sand. - FINE ALLUVIUM	
		7		19.0	19.0							
BLOWS/	FT	12 DENSI	S2	20.5 BLOWS/FT.	CONSISTE		SAMPLE	DENTIFICATI		GROUN	DWATER ABBREVIATIONS	
0 - 4 4 - 10 10 - 30 30 - 50	ME	VERY LO LOOSE DIUM DE DENSE RY DENS	OSE	0 - 2 2 - 4 4 - 8 8 - 15 15 - 30	VERY SO SOFT MEDIUM S STIFF VERY STI	FT (TIFF T	C - CALIF S - SPLIT T - TUBE	ORNIA BARR	EL	WD - W NE - N NR - N	WHILE DRILLING IOT ENCOUNTERED OT READ DT APPLICABLE	

I

I

HALEY & ALDRICH, INC.				TEST BORIN	IG REPORT	Boring No. B-17						
HALEY	& ALDRI	CH, INC.					Page 2 of 2					
Depth in Feet	Casing Blows Per Foot	Sampler Blows Per 6 Inch	Sample Number	Sample Depth Range		FIELD CLASSIFICATION AND REMARKS						
		16			CLAYEY SAND	WITH GRAVEL (SC)						
	-				Medium dense	, brown, wet, mostly sand, som	e gravel, little clay.					
							- COARSE ALLUV					
			-		24.0							
		50/5"	S 3	24/24.4	SHALE							
- 25 -					Hard, gray, we	t, slightly weathered shale.						
	-				Bottom of Expl	oration at 24.4 ft.						
						8 - C						
- 30 -												
- 35 -												
- 40 -												
	_											
BLOWS	FT.	DENSIT	Y BL	OWS/FT.	CONSISTENCY	SAMPLE IDENTIFICATION	GROUNDWATER ABBREVIATIO					
0 - 4 4 - 10 10 - 30	ME	VERY LOO LOOSE DIUM DEN DENSE	1SE 2	- 2 - 4 - 8 - 15	VERY SOFT SOFT MEDIUM STIFF STIFF	C - CALIFORNIA BARREL S - SPLIT SPOON T - TUBE U - UNDISTURBED PISTON	WD - WHILE DRILLING NE - NOT ENCOUNTERED NR - NOT READ N/A- NOT APPLICABLE					
30 - 50		INCOMENT	1 8	- 15	SUFF	U- UNDIG TUNDLU FISTUN	INA INVI ALLENADEL					

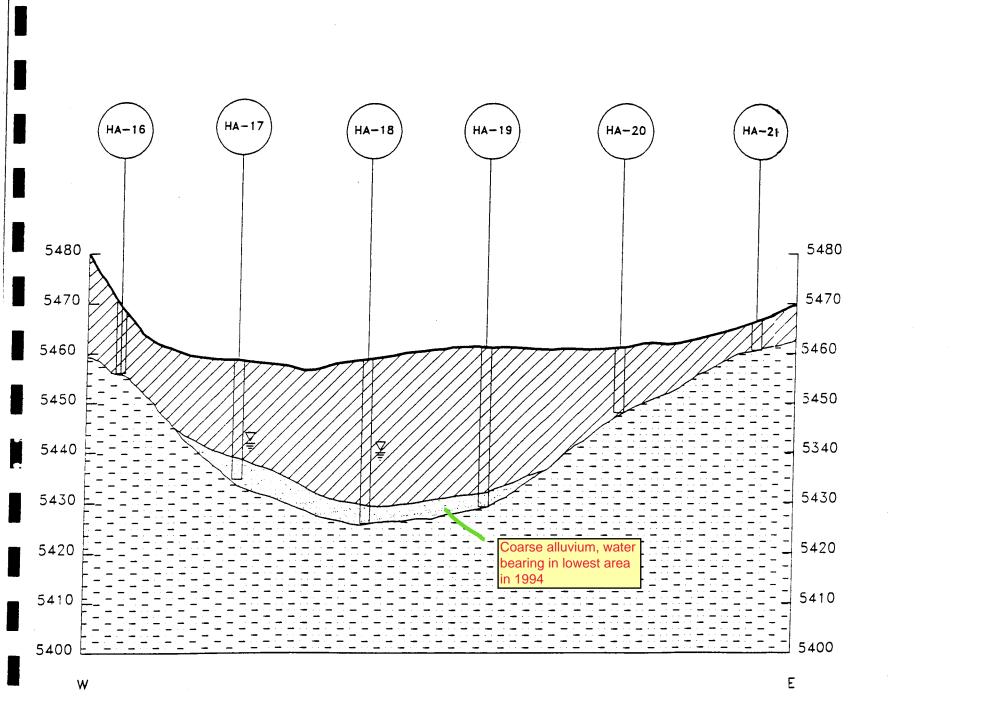
HALE	Y & AL	DRICH,	INC.		т	EST BOR	RING RE	PORT			Boring No. B-18				
			Ci Gi	anna Ranch I ty of Colorad DI Drilling edrich D-50		e Analys	is				Job No. 20194-000 Page No. 1 of 2 Location: See Plan Elevation: See Plan				
GROUN	DWAT	R		DEPTH TO:				Auger Type		npler /pe	Date Start: 3/24/94				
Date	Hrs A Com	p	Water	Bottom of Casing	Bottom of Hole	Type Size ID		HSA 4-1/4 in.		s	Date Finish: 3/24/94 Driller: J. Shaw Prepared By: M. Ganse				
	8:00		19.0' 18.4' 17.0'	34.3'	34.3'	Hamme		4-1/4 In.		1 3/8 in. 140 lb. 30 in.					
Depth in Feet	Casing Blows	Sampler Blows Per 6 Inch	Samp				FIE	LD CLASSIFICA			ARKS				
- 5		4 3 4	S1	<u>14.0</u> 15.5		CLAY (CL) n stiff, bro		st, mostly clay,	, trace f	ine gravel.	- FINE ALLUVIUI				
		7 12	S2	<u>19.0</u> 20.5				ry stiff and no g							
0 - 4 4 - 10 10 - 30 30 - 50 51 +	ME	DENSIT VERY LOG LOOSE DIUM DEI DENSE RY DENS	OSE NSE	BLOWS/FT. 0 - 2 2 - 4 4 - 8 8 - 15 15 - 30 31 +	CONSISTI VERY SC SOFT MEDIUM S STIFF VERY ST HARD	DFT STIFF	C - CAL S - SPLI T - TUBI U - UND	ISTURBED PIST	EL	WD - W NE - N NR - NG N/A- NG	DWATER ABBREVIATIONS WHILE DRILLING IOT ENCOUNTERED OT READ DT APPLICABLE				

HALEY	& ALDRI	CH INC.			TEST BOP	ING REPORT	Boring No. B-18
							Page 2 of 2
Depth in Feet	Casing Blows Per Foot	Sampler Blows Per 6 Inch	Sample Number	Sample Depth Range		FIELD CLASSIFICATION	N AND REMARKS
- 25		<u> </u>	53	24.0 25.5	Same as abov	/e except stiff.	
		8		25.5			
ŀ		8					
30 -		10 14	S4	29.0 30.5		D WITH GRAVEL (SC) b, brown, wet, mostly sand, som	ne gravel, little clay. - COARSE ALLUVI
					32.0		
		50/3"	S5	34/34.3	SHALE Very hard, gra	y, wet, slightly weathered shale	h.
35		50/3"	<u>S5</u>	34/34.3	Very hard, gra	y, wet, slightly weathered shale oration at 34.3 ft.	
40		50/3"	S5	34/34.3	Very hard, gra	and the second s	
		50/3"		34/34.3 WS/FT.	Very hard, gra	and the second s	
40	VE MEDI C		BLO E 0 - 2 -	WS/FT. 2 4 8 15	Very hard, gra Bottom of Exp	oration at 34.3 ft.	GROUNDWATER ABBREVIATION WD - WHILE DRILLING NE - NOT ENCOUNTERED NR - NOT READ N/A- NOT APPLICABLE

I

PROJE			-			BORING R			Boring No. B-19
			City GDI	na Ranch D of Colorado Drilling rich D-50	am Seepage Ar o Springs	nalysis			Job No. 20194-000 Page No. 1 of 2 Location: See Plan Elevation: See Plan
GROUN	DWATER	3	1	DEPTH TO:			Auger Type	Sampler Type	Date Start: 3/25/94 Date Finish: 3/25/94
Date 3/25/94	Hrs Aft Comp WI	V	Vater NE	Bottom of Casing N/A	Ha	pe te ID mmer Wt mmer Fall	HSA 4-1/4 in.	S 1 3/8 140 I 30 i	Driller: J. Shaw Prepared By: M. Gans b.
in I	Casing Blows Per Foot	Sampler Blows Per 6 Inch	Sample Number	Sample Depth Range	ne		ELD CLASSIFICA		5
10		7 10 11	51	<u>14.0</u> 15.5	LEAN CLAY Very stiff, b		nostly clay, trace	fine gravel.	- FINE ALLUVIUI
LOWS/F		12 21 DENSIT	S2	20.5 .0WS/FT.	Same as abo		-		
0 - 4 4 - 10 0 - 30 0 - 50	V MED	ERY LOO LOOSE IUM DEN DENSE	OSE 0 2 ISE 4 8	- 2 - 4 - 8 - 15 - 30	CONSISTENC VERY SOFT SOFT MEDIUM STIFI STIFF VERY STIFF	C - CA S - SPI T - TU U - UN	LE IDENTIFICATIO LIFORNIA BARRE LIT SPOON BE DISTURBED PIST AB SAMPLE	L WD NE NR	- WHILE DRILLING - NOT ENCOUNTERED - NOT READ - NOT APPLICABLE

ł


Degit Notice Sample Sample Sample Number Sample Desth Parg B Sample Sample Desth Parg B FIELD CLASSIFICATION AND REMARKS 1 17/7 1	HALEY	& ALDRI	CH. INC.			TEST BOR	ING REPORT	Ľ	Boring No. B-19
in blows Blows Blows Number Depth Perford Perford Perford Perford Perford Perford 17/3" Perford Perford Perford Perford Perford 10 53 24.0 25.5 Perford Perford Perford 10 53 24.0 25.5 Perford Perford Perford 10 12 54 25.5 Perford Perford Perford 10 12 54 23.0 CLAYEY SAND WITH GRAVEL (SC) Very medium dense, brown, dry, mostly fine sand, some gravel, little clay. 30 16 36.5 Sanse as above except very stiff, no gravel and trace sand. 30 16 36.5 Sanse as above except very stiff, no gravel and trace sand. 30 16 34 35.5 Perford 31 35 35.5 Perford Perford 34 35 34.0 35.5 Perford Perford 40 16 Perford Perford Perford Perford 40 24 25 24.0 Perford Perford Perford 40 24 25 Sert Perford Perford		a Abbin						1	Page 2 of 2
25 10 53 24.0 25 12 23 25.5 30 12 54 29.0 30 12 54 29.0 10 12 54 29.0 10 12 54 29.0 10 12 54 29.0 10 10 30.5 Vary medium dense, brown, dry, mostly fine sand, some gravel, little clay. 30 10 30.5 Vary medium dense, brown, dry, mostly fine sand, some gravel, little clay. 31 55 34.0 35.5 32.0	in	Blows	Blows		Depth		FIELD CLASSIFICATION	N AND REM	ARKS
30 16 29.0 30 16 29.0 30 12 S4 12 S4 29.0 30 12 S4 12 S4 29.0 30 10 30.5 12 S4 29.0 20 CLAYEY SAND WITH GRAVEL (SC) Very medium dense, brown, dry, mostly fine sand, some gravel, little clay. - - 32.0 - 34 S5 35 35.5 40 - 40 - 40 - 40 - 40 - 40 - 40 - 40 - 40 - - - - Shale - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	- 25		10 10	53		Same as abov	e except very stiff, no gravel ar	nd trace sand	1.
30 16 12 S4 29.0 CLAYEY SAND WITH GRAVEL (SC) 30 10 30.5 Very medium dense, brown, dry, mostly fine sand, some gravel, little clay. 31 16 32.0 32 32.0 35 16 36 34.0 37 16 38 35.5 39 35.5 30 35.5 30 35.5 31 35.5 32 35.5 34 55 35.5 Bottom of Exploration at 35.5 ft. 40 16 16 16 17 BLOWS/FT. 2005/FT. DENSITY 20.4 VERY LOOSE 2.4 VERY SOFT 2.4 SOFT 3.5 Sinter for true for the soft state of the so	-		12		20.0				
30 12 S4 230 30 10 30.5 Very medium dense, brown, dry, mostly fine sand, some gravel, little clay. - COARSE ALLUV 32.0 35 16 34 35 36 36 37 16 34 35 36 36 37 18 38 39 18 39 30 30 31 32 33 34 35 36 37 38 39 39 30 30 31 32 33 34 35 35 36 37 38 39 39 39 30 39 39 39 39 39 39 39 39 39 39	ŀ		10			29.0			
32.0 34 35 36 36 37 38 38 39 39 30 31 35 35 36 37 38 39 39 31 35 36 37 38 39 39 39 30 30 31 32 35 36 36 37 38 39 </td <td>30 -</td> <td></td> <td>12</td> <td>S4</td> <td></td> <td></td> <td></td> <td>sand, some g</td> <td></td>	30 -		12	S4				sand, some g	
35 18 34 35 34.0 35.5 Hard, brown, dry, slightly weathered shale. 35 34 55 35.5 40 10 10 40 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 100SE 10 10 10 100SE 10 10						32.0			- COARSE ALLUVIU
40 40 40 40 40 40 40 40 40 40	35			S5	-		ry, slightly weathered shale.		
0 - 4 VERY LOOSE 0 - 2 VERY SOFT C - CALIFORNIA BARREL WD - WHILE DRILLING 4 - 10 LOOSE 2 - 4 SOFT S - SPLIT SPOON NE - NOT ENCOUNTERED 0 - 30 MEDIUM DENSE 4 - 8 MEDIUM STIFF T - TUBE NR - NOT READ 0 - 50 DENSE 8 - 15 STIFF U - UNDISTURBED PISTON N/A- NOT APPLICABLE						Bottom of Expl	oration at 35.5 ft.		
0 - 30 MEDIUM DENSE 4 - 8 MEDIUM STIFF T - TUBE NR - NOT READ 0 - 50 DENSE 8 - 15 STIFF U - UNDISTURBED PISTON N/A- NOT APPLICABLE	40								
31 + HARD X - OTHER BORING NO. B-19	LOWS/1	VI	ERY LOOS	E 0-	2	VERY SOFT	C - CALIFORNIA BARREL	WD - WH	ILE DRILLING

I

HALEY	& ALI	DRICH, I	NC.		т	EST BORIN	G REPORT		Boring No. B-20
PROJEC CLIENT CONTR EQUIPM	ACTO		City GDI	ha Ranch D of Colorad Drilling rich D-50	am Seepage o Springs	e Analysis			Job No. 20194-000 Page No. 1 of 1 Location: See Plan Elevation: See Plan
GROUN	Date Start: 3/25/94 Date Finish: 3/25/94								
Date	Hrs Af Comp	V		Bottom of Casing	Bottom of Hole	Туре	Type HSA	Type S	Driller: J. Shaw Prepared By: M. Gans
3/25/94	W	D	NE	N/A	14.4'	Size ID Hammer V Hammer F		1 3/8 in 140 lb. 30 in.	
in I	Casing Blows	Sampler Blows Per 6 Inch	Sample Number	Sample Depth Range			FIELD CLASSIFIC	1	ARKS
- 5		50/5"	<u></u>	14/14.4	Very st NOTE: 	Thumbsize	dry, mostly clay, tra- gravel noted at 11.0 dry, slightly weather	0 ft.	- FINE ALLUVIU
15 BLOWS/F 0 - 4 4 - 10 10 - 30	MED	DENSIT ZERY LOC LOOSE DIUM DEN DENSE	DSE 0 2 NSE 4	OWS/FT. - 2 - 4 - 8 - 15	CONSISTI VERY SC SOFT MEDIUM S STIFF	ENCY SA DFT C STIFF T	MPLE IDENTIFICAT CALIFORNIA BARF SPLIT SPOON TUBE UNDISTURBED PIS	REL WD - V NE - 1 NR - N	NDWATER ABBREVIATIONS WHILE DRILLING NOT ENCOUNTERED IOT READ OT APPLICABLE

HALE	Y & AL	DRICH,	INC.		т	EST BORING F	EPORT		Boring No. B-21			
			City	ona Ranch D of Colorad Drilling drich D-50	Dam Seepag Io Springs	e Analysis			Job No. 20194-000 Page No. 1 of 1 Location: See Plan Elevation: See Plan			
GROUN												
Date						170		s	Date Finish: 3/25/94 Driller: J. Shaw			
/25/94	Com	p /D	Water NE	of Casing N/A	of Hole 6.5'	Type Size ID	HSA 4-1/4 in.	1 3/8 in.	Prepared By: M. Gan			
						Hammer Wt Hammer Fall		140 lb. 30 in.				
Depth in Feet	Casing Blows Per Foot	Sampler Blows Per 6 Incl	Numbe				IELD CLASSIFICA		ARKS			
5		18 24 24	S1	<u>5.0</u> 6.5	Brown NOTE: 				- FINE ALLUVI			
					Bottom	of Exploration	at 6.5 ft.					
10												
ł												
Ē	-											
15 -												
-			-									
L												
	F											
	-											
+												
Lows/	FT.	DENSI	гү в	LOWS/FT.	CONSIST			N GROUN	DWATER ABBREVIATION			
0 - 4 4 - 10 0 - 30 0 - 50	ME	LOOSE DIUM DEI DENSE	NSE 4) - 2 2 - 4 4 - 8 8 - 15	VERY SC SOFT MEDIUM S STIFF	STIFF T - TU	DISTURBED PIST	NE - N NR - N	VHILE DRILLING NOT ENCOUNTERED OT READ OT APPLICABLE			
1 +		RY DENS		5 - 30	VERY ST		AB SAMPLE					

I

SCALE: 1"=200' HORIZONTAL 1"=20' VERTICAL

PROJECT: H. R.

<u>LEGEND</u>

HA-16

₹

 $\overline{}$

- GROUND SURFACE - INFERRED STRATIGRAPHIC BOUNDARIES

BORING LOCATIONS

BORINGS, DRILLED BY H&A

WATER LEVEL

FINE-GRAINED ALLUVIUM-LEAN CLAY WITH SAND (CL) MEDIUM TO VERY STIFF, BROWN, MOSTLY CLAY, SOME AREAS SILTY, SOME AREAS WITH SAND

COARSE-GRAINED ALLUVIUM-CLAYEY SAND (SC) DENSE PRIMARILY COARSE SAND, SOME AREAS CLEAN WITH GRAVEL, MOST AREAS WITH SOME CLAY OR SILT

SHALE BEDROCK-VERY HARD TO HARD, SLIGHTLY TO MODERATELY WEATHERED SHALE

ł	L	E	Y	&	AL	D	R	1	C	Η	IN	C.	
	Geo	otec	hnica	I Eng	ineers	& E	nvira	nm	ento	al Co	onsulta	nts	
				FI	GUR	Ε	4						
			(GEOL	OGIC	PRO	DFIL	Ε					

OF COLORADO SPRINGS	JOB NO:	20194-004
SUPERNATANT DAM	DATE:	FEBRUARY 1995

TABLE I HANNA RANCH EXPANSION SUMMARY OF LABORATORY TEST RESULTS

Boring No.	Sample No. and Depth	Soil Description (Classification)	Natural Water	Dry Unit Weight	Water Soluble Sulfates (%)	Silt/Clay <#200	Atterbe	erg Limits	Uncon Compre		Swell- Consolidation	
	(Feet)		Content (%)	(PCF)			Liquid Limit	Plasticity Index	Stress (PSF)	Strain (%)	Swell (%)	Press (PSF)
HA-201	C1 (0.0-1.5)	Lean Clay with Sand (CL)	15.3	109.0	0.83	83.1	47	22			0.3	
HA-201	C6 (25.0-26.5)	Lean Clay (CL)	10.3	118.3		87.0	42	20			4.9	
HA-201	C8 (35.0-35.5)	Claystone	11.5				53					
HA-201	C9 (40.0-40.5)	Claystone	13.0									
HA-201	C10 (45.0-45.2)	Claystone	11.3	120.1					5153		-	
HA-202	C2 (5.0-6.5)	Weathered Claystone	12.5			96.3	50	29				
HA-202	C3 (10.0-10.8)	Weathered Claystone	25.8									
HA-202	C4 (15.0-15.3)	Claystone	11.9		1.95		-					
HA-202	C5 (20.0-20.3)			1	1.59							
HA-202	C6 (35.0-35.1)	Claystone	13.3	110.9		1			4670		1	
HA-202	C10 (45.0-45.1)	Claystone	7.5	105.1	0.16	99.1		-			1.9	

TABLE I
HANNA RANCH EXPANSION
SUMMARY OF LABORATORY TEST RESULTS

Boring No.	Sample No. and Depth	Soil Description (Classification)	Natural Water	Dry Unit Weight	Water Soluble Sulfates (%)	Silt/Clay <#200	Atterbe	erg Limits	Uncon Compre		Swell- Consolidation	
	(Feet)		Content (%)	(PCF)	-		Liquid Limit	Plasticity Index	Stress (PSF)	Strain (%)	Swell (%)	Press (PSF)
HA-203	C2 (5.0-6.5)	Lean Clay with Sand(CL)	15.3	96.8	0.09	80.1	44	21			consol upon wetting	
HA-203	C3 (10.0-10.5)	Claystone	9.8	-				-				
HA-203	C4 (15.0-15.3)	Claystone	12.2		=			•				
HA-203	C6 (25.0-25.3)	Claystone	11.9			97.4			_			
HA-203	C7 (30.0-30.3)	Claystone	12.8	107.9		-					6.1	
HA-204	C1 (0.0-1.5)	Weathered Claystone	23.5	- - X		90.9	52	28				
HA-204	C2 (5.0-6.5)	Weathered Claystone	26.9									
HA-204	C3 (10.0-11.5)	Weathered Claystone	20.8				8					
HA-204	C4 (15.0-16.5)	Weathered Claystone	15.0			98.4	41	19				
HA-204	C5 (20.0-21.0)	Claystone	14.3									
HA-204	C6 (25.0-26.0)	Claystone	14.9			97.8	51	29				

TABLE I
HANNA RANCH EXPANSION
SUMMARY OF LABORATORY TEST RESULTS

Boring No.	Sample No. and Depth	Soil Description (Classification)	Natural Water	Dry Unit Weight	Water Soluble Sulfates (%)	Silt/Clay <#200	Atterbe	erg Limits	Uncon Compre		Swell- Consolidation	
	(Feet)		Content (%)	(PCF)		-	Liquid Limit	Plasticity Index	Stress (PSF)	Strain (%)	Swell (%)	Press (PSF)
HA-205	C2 (5.0-6.5)	Weathered Claystone	17.4		,		-					
HA-205	C3 (10.0-11.5)	Weathered Claystone	18.9			87.8	45	20				
HA-205	C4 (15.0-15.7)	Claystone	16.3	\$5								
HA-205	C5 (20.0-20.7)	Claystone	14.3			1	-					
HA-205	C6 (25.0-25.4)	Claystone	15.0									
HA-205	C7 (30.0-30.4)	Claystone	13.5			97.5						
HA-205	C8 (35.0-35.1)	Claystone	12.4				L					
HA-205	C9 (40.0-40.2)	Claystone	10.5			95.3	61	38				
HA-207	C2 (5.0-6.5)	Lean Clay (CL)	18.4	109.1		88.7	38	20	1731			
HA-208	C2 (5.0-6.5)	Weathered Claystone	22.5								÷.	
HA-208	C3 (10.0-11.5)	Weathered Claystone	14.8	-				н."			38	

TABLE I
HANNA RANCH EXPANSION
SUMMARY OF LABORATORY TEST RESULTS

Boring No.	Sample No. and Depth	Soil Description (Classification)	Natural Water	Dry Unit Weight	Water Soluble Sulfates (%)	Silt/Clay <#200	Atterbe	erg Limits	Unconfined Compression		Swell- Consolidation	
	(Feet)		Content (%)	(PCF)			Liquid Limit	Plasticity Index	Stress (PSF)	Strain (%)	Swell (%)	Press (PSF)
HA-208	C4 (15.0-15.3)	Claystone	11.9			98.6	45	23				:
HA-209	C2 (5.0-6.5)	Lean Clay (CL)	19.0	109.2		95.6	39	21	5277		_	
HA-210	C1 (0.0-1.5)	Lean Clay (CL)	26.7			85.7	41	21	-			
HA-210	C2 (5.0-6.5)	Weathered Claystone	10.6									
HA-210	C3 (10.0-10.8)	Claystone	9.7			94.2	35	17	-			
HA-202 HA-203	bulk (0-3, 0-7.5)	Lean Clay with Sand(CL)*				83.0	45	28				
HA-201 HA-202 HA-203	bulk (3.0-10.0)	Weathered Claystone**				95.3	49	30				
HA-201 HA-202 HA-203	bulk (10.0-30.0)	Claystone		V.		96.3	51	32			10 a.	

See Appendix C, Figure C-2 for Proctor results See Appendix C, Figure C-1 for Proctor results ¥

•

**

EQUIPMENT	NIXON ASH PIT		LOCATION
TYPE OF BIT		NCHES SURFACE	TOP OF CASING
STARTED:	DRILLING AGENCY	GROUNDWATER DEPTH	ELEVATION DATE
COMPLETED:	LOGGED BY		_
BACKFILLED:	SURFACE CONDITIONS	1	
o DEPTH (FEET) GEOLOGIC LOG	SOIL DESCRIPTION	BLOW COUNTS	MOISTURE CONTENT (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
2 0	SAND LAY C CLAY or SILT, LOW PLASTICITY SILT	Indicates number of blows required to drive the identified sampler 6 blows required to drive the identified sampler 6 inches with a 140 lb. 50 the identified sampler 12 inches with a 140 lb. 50 inches.	CONTINUOUS SAMPLER GRAB SAMPLER (OD-2.5") CALIFORNIA SAMPLER (OD-2.5") MODIFIED CALIF. SAMPLER (OD-3") * NO * RECOVERY PITCHER SAMPLER SHELBY TUBE SAMPLER SHELBY TUBE SAMPLER STANDARD PENETRATION SAMPLER STANDARD PENETRATION SAMPLER (OD-2") LL=Liquid Limit % PI=Plastic Index -#200=percent passing No. 200 sieve Ex=percent expansion under defined load Exp=expansive pressure Cal=percent collapse at defined load

PROJECT NO.	7229	LOG OF TES	T BOR	NG			SHEET	1 OF 1
ORILLING EQUIPMENT	<u>89</u>	PROJECT NAME NIXON ASH PIT			LOCATI		TEST B	ORING LAN
CME 55 (W/	4 AUTOHAMMER 4 AUGER	HAMMER DATA: WT. 140 LBS. DROP 30	INCHES SURFA	ACE N	/A	TOTAL OF HOL	DEPTH .E	9.5'
<u> </u>			GROUNDWA DEPTH	TER	NONE	DATE	AT	DRILLING
COMPLETED: 5		GGED BY W. BARREIRE			NONE	<u></u>	5/	31/02
BACKFILLED:	S	REACE CONDITIONS			NONE			/6/02
DEPTH (FEET) SYMBOL		LOG OF MATERIAL		BLOW COUNTS	MOISTURE CONTENT (%)	DRY DENSITY (PCF)	SAMPLE TYPE	NOTES
-0 1 2 3 4 -1 2 3 4 -1	BEDROCK	SLIGHTLY SANDY, HARD TO VERY HAST, IRON STAINING, BROWN TO OLI		14				
29		1815 -	IST DRIVE, UNIT	115				<u> </u>
FN: LOGS	KL	EINFELDER COLORADO	O SPRINGS, CO S	30919		FIGUR	- NU.	

	PEDBOGCS CLAY (CL), STEF TO VERY STEF, MOIST, BROWN. ISA ISA ISA CLAY (CL), STEF TO VERY STEF, MOIST, BROWN. ISA ISA ISA ISA CLAY (CL), STEF TO VERY STEF, MOIST, BROWN. ISA ISA ISA ISA CLAY (CL), STEF TO VERY STEF, MOIST, BROWN. ISA ISA ISA ISA CLAY (CL), STEF TO VERY STEF, MOIST, BROWN. ISA ISA ISA ISA CLAY (CL), STEF TO VERY STEF, MOIST, BROWN. ISA ISA ISA ISA CLAY (CL), STEF TO VERY STEF, MOIST, BROWN. ISA ISA ISA ISA CLAY (CL), STEF TO VERY STEF, MOIST, BROWN. ISA ISA ISA ISA III TOTAL DEPTH. ISO' ISA ISA ISA ISA	SHEET 1 OF 1				
	CME 55 (1		ER NIXON ASH PIT	[ctur	LOCA	
0		·				
-				DEPTH	NONE DAT	E AT DRILLING
			SURFACE CONDITIONS		NONE	5/31/02
		<u> </u>	EXPOSED SOIL			
			LOG OF MATERIAL		BLOW COUNTS MOISTURE CONTENT (%) DENSITY (PCF)	NOTES
	1 2 3 4 4 5 7 7		STIFF TO VERY STIFF, MOIST, F	BROWN.		2 S
],		CLAYSTONE, IRON STAININ	IG. OLIVE-BROWN.	'LY MOIST,	50/8	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
	I: LOGS	KLE	NFELDER 4815 COLORA	LIST DRIVE, UNIT 115 DO SPRINGS, CO 80919	FIGURE N	0.: <u>B-3</u>

PROJECT NO.	17229	LOG	OF TE	ST	BORI	NG			SHE	
DRILLING EQUIPMENT		PROJECT NAME NIXON ASH	DIT				LOCAT	ION SEE LOCA	TEST TION	BORING PLAN
CME 55 (W	/ AUTOHAMMER) 4" AUGER	HAMMER DATA: WT. 140		30 INCH	ES SURFA		/A	TOTAL OF HO		20'
		LING AGENCY SPECTR			GROUNDWA'		NONE	DAT	E A	
COMPLETED:		GED BY W. BARRE		-8	64,		NONE			5/31/02
BACKFILLED:	SUR	FACE CONDITIONS		-1			NONE	_		6/6/02
	1 00	H337 HCC03	<u></u>			_ v	NT NT	1 En	TYPE	
CFEET) (FEET) SYMBOL		LOG OF MATER	۹L			BLOW COUNTS	MOISTURE CONTENT (%)	DENSITY DENSITY (PCF)	SAMPLE 1	NOTES
	BROWN.	ND GRAVEL (ROAD E								
2 3 4 5 1	CLAY (CL), SC TO STIFF, SLIC STRINGERS, LIC	ME SLIGHTLY SANDY SHTLY MOIST TO MO CHT BROWN.	' ZONES, MI IST, SOME S	EDIUM SULFATI	STIFF	20				
6 7 7 8 9 9 10						7				
11 12 13 14 15										0
16-	1				_					
17 18 19	BEDROCK CLAYSTONE, H BROWN.	ARD, SLIGHTLY MOIS	T, BROWN T	fo oliv	/E —	50/9			N	
20-21-	TOTAL DEPTH:	20'								
22								-		
23										
25										
26										
27										
28										
29-										
-				-						
FN LOGS	KLE	INFELDER	481 COLOF	5 LIST D RADO SPR	RIVE, UNIT RINGS, CO 8	115 30919			EΝ	0.: <u>B-4</u>

	PRC	DJECT NO.	17229			LOG	OF	TES	ΓII	BOR	ING	K-4	1		SHEET	1 OF	1
		LING IPMENT	AUTOHAM	AFR)	PROJECT NA		PIT					LOCA	TION SEE		ST BO	RING	
		OF BIT	4" AUGER		AMMER DATA:			DROP 30	NCHE	S SURF	ACE	! \/A		L DEP		14.5'	
\mathcal{I}		STARTED:	5/30/02	DRILL	ING AGENCY	SPECT	RUM		C D	ROUNDWA		NONE		ATE	AT D	RILLING	;
	DATE	COMPLETED:	5/30/02			. BARRE	IRE]			NONE			5/3	1/02	
		BACKFILLED:		SURF/ WEE	ACE CONDITIO	N5]			NONE	<u> </u>		6/1	5/02	
	DEPTH				LOG OF	MATERI	AL.				BLOW COUNTS	MOISTURE CONTENT (%)	DRY DENSITY (PCF)	SAMPLE TYPE		NOTES	
			CLAY (CL), MOIST, SOI BROWN. BROWN. BROWN. TOTAL DEPT	, SLIG IOIST	HTLY SAN	RINGERS,	LIGHT	BROWN	TO		10						
	21— 22—																
	23—																
2	4																
2	.5-													i i			
2	-6																
2	7																
2	.8																
2	9																
-3	0 FN: 1	005	KL	EIN	FELD	ER	4 COL	815 LIST DR ORADO SPRI	IVE, L NGS,	JNIT 115 CO 8091	9	F	IGURE	NO	.:	B-5	

PROJECT NO	17229	LOG	OF TES	T BOR	RING K	-5	SHEET 1 OF 1
DRILLING EQUIPMENT	W/ AUTOHAMME	PROJECT NAME R) NIXON ASH	PIT			LOCATION SEE T	TEST BORING
TYPE OF BIT	4" AUGER	HAMMER DATA: WT. 140		INCHES SUR	REACE N/A	TOTAL O OF HOL	
STARTED:		DRILLING AGENCY SPECT	RUM	GROUNDY		ONE DATE	AT DRILLIN
ы ———		LOCGED BY W. BARRE	IRE	-		ONE	5/31/02
BACKFILLED		SURFACE CONDITIONS NATIVE GRASS		-	N	ONE	6/6/02
┝━─└─┬──╼		NATIVE GRADS			S La	⊨ ≻_	IYPE
DEPTH (FEET) SYMBOL		LOG OF MATERI	AL		BLOW COUNTS MOISTURE	CONTENT (%) DRY DENSITY (PCF)	NOTES
	4' TOPSOIL	AND GRASS.					
	CLAY (CL), MOIST, LIGH	MEDIUM STIFF TO VER I BROWN.	Y ST FF, SLIGH	ITLY			
3-							
4-					11		
5							
6-							
7-							
8	BEDROCK	<u> </u>	<u> </u>				
9_	CLAYSTONE, BROWN.	HARD, SLIGHTLY MOIS	T. BROWN TO	OLIVE-	50		
10-	BROWN.	14					
11-							
12							~
13-							
14-					50/7		
15	TOTAL DEPT	H: 14.5'					
16-							
17-							
18		·					
19							
20							
21-							
22-							
23-							
24-							
-5							
26-							
27							
28-							
29-							
-30				ST DRIVE, UNIT	115		NO . 8-6
IN LOOS	KL	EINFELDER	COLORADO	SPRINCS, CO	80919	FIGURE	NO.: <u>B-6</u>

	PROJECT NO.	17229		LOG	OF	TEST	BOR	ING	K-6	5	SHEET	1 OF	2
	DRILLING EQUIPMENT CME 55 (V	V AUTOHAMM		NAME ON ASH	PIT				LOCAT	NON SEE	TEST BO	 RING AN	
\wedge	TYPE OF BIT	4" AUGER		ata: wt. 140		drop 30 inc	HES SURF		 N∕A	TOTAL OF HO	DEPTH	45'	-1
0	STARTED:	5/30/02	DRILLING AGEN	SPECTR	NUM	-	GROUNDWA DEPTH	TER	NONE	DAT		RILLING	
	COMPLETED:	5/30/02	LOGGED BY	W. BARRE	IRE				NONE			51/02	
	BACKFILLED:		SURFACE COND ASH W/ SP	TIONS	EDS				NONE		6/0	5/02	
	o DEPTH (FEET) SYMBOL		LOG	OF MATERIA	NL.			BLOW COUNTS	MOISTURE CONTENT (%)	DRY DENSITY (PCF)	SAMPLE TYPE	NOTES	
1 1 1 1 1 1 1 1 1 1 1 1 1 2		ASH, MOIS	F, GRAY TO I	BLACK.				6 7 18					
-30 F		KLI	INFEL	DER	48 COL	115 LIST DRIVE DRADO SPRING	. UNIT 115 S. CO 8091	9	F	GURE 1	VO.:	<u>B-7</u>	

PROJECT NO.	7229		LOG	OF	TEST	BORI	NG	K-6	; 	s		OF	2
DRILLING EQUIPMENT CME 55 (W)	-		PROJECT NAME					LOCATI		TES TIOI	T BORI	NG I	
TYPE OF BIT	4" AUGER		AMMER DATA: WT. 14		DROP 30 IN	CHES SURFA	CE N	/A	TOTAL OF HO		^ਮ 4:	5'	1
<u> </u>	5/30/02	DRILL	ING AGENCY SPECT	TRUM		GROUNDWA		NONE	DAT	E	AT DRI	LLIN	\bigcirc
COMPLETED: 5		, 	ED BY W. BARR				-	NONE			5/31	/02	
	1/ 30/ 02	SURE	ACE CONDITIONS					NONE			6/6/	′02	
BACKFILLED:	<u> </u>	ASH	w/ SPORADIC W	VEEDS				1		H الا			
DEPTH (FEET) SYMBOL			LOG OF MATEF	RIAL			BLOW	MOISTURE CONTENT (%)	DRY DENSITY (PCF)	SAMPLE TYPE	N	DIES	
-30 $-11 = %$	ASH, MOIS	T. GR	RAY TO BLACK.				16						
		-											
32-													
33-													
34													
35							39						
36-													
37-1.1													
38													
39-1. 1										2			
40-7/	CLAY (CL)	, STIF	FF TO VERY STIFF	, VERY	MOIST, BR	OWN.	14						
41												1	\bigcirc
42													
43	BEDROCK												
44	CLAYSTONE BROWN.	E. SLI	GHTLY SANDY, HA	RD, MC	NST, OLIVE-	-	50						
45						·							
46	TOTAL DEF	1H: 4	+0										
47													
48-													
49-													
50-													
51-													
52-													
53-													
54								1					
55-													
56-													
57-													
58-												(\bigcirc
59													
					- <u></u> -		1		<u> </u>				10
FN: LOGS	К	LEI	NFELDER		4815 LIST COLORADO S	DRIVE, UNIT I PRINGS, CO B	15 0919		FIGUR	E N	10.: _	8-	-8

PROJECT NO.	17229	LOG OF T	EST BO	RING	K-7	Si	IEET 1 OF	1
DRILLING EQUIPMENT CME 55 (w	/ AUTOHAMM	PROJECT NAME			LOCATIO	SEE TES	T BORING	
TYPE OF BIT	4" AUGER	HAMMER DATA: WT. 140 LBS. DRO	P 30 INCHES S	URFACE N	/A	TOTAL DEPTI OF HOLE	^H 24.5	-
	5/30/02	DRILLING AGENCY SPECTRUM	GROUN DEPTH	IDWATER	NONE	DATE ,	AT DRILLING	_
COMPLETED:	5/30/02	LOCCED BY W. BARREIRE			NONE	<u> </u>	5/31/02	_
BACKFILLED:		SURFACE CONDITIONS			NONE	<u> </u>	6/6/02	
o DEPTH (FEET) SYMBOL		LOG OF MATERIAL		BLOW COUNTS	MOISTURE CONTENT (%)	DRY DENSITY (PCF) SAMPLE TYPE	NOTES	No.
1-16-20-64	ASH, SLIGH	ITLY MOIST TO MOIST, GRAY TO E	BLACK.					_
2	SAND, GRA	VELLY (ROAD BASE), SLIGHTLY MO ROWN.	DIST,					
3-11-11		GRAY TO BLACK.		-1				
	CLAY (CL), SLIGHTLY M	MEDIUM STIFF TO STIFF, VERY MO	OIST TO					
9 10 11 12 13 14 15 16 17				6				
18 19 20 21 22 23	BEDROCK CLAYSTONE, HARD, SLIGH	SLIGHTLY SANDY LENSES, MEDIUM TLY MOIST, OLIVE-BROWN.	HARD TO	50/11				
24 25 26 27 8 29	TOTAL DEPTH	: 24.5		50/7				
50	KLE	HINFELDER 4815 COLORAD	LIST DRIVE, UNIT 1 DO SPRINCS, CO 8	15 0919	FIG	URE NO.	B-9	

PROJECT NO. 17229	LOG OF TEST	BORING	K-8		SHEET	1 OF 2
DRILLING EQUIPMENT	PROJECT NAME NIXON ASH PIT		LOCATI	366 1	EST BO	RING
CME 55 (W/ AUTOHAMMER) TYPE OF BIT 4" AUGER	AMMER DATA: WT. 140 LBS. DROP 30 II	NCHES SURFACE ELEVATION	N/A	TOTAL D	E E E E E E E E E E E E E E E E E E E	56'
	ING AGENCY SPECTRUM	GROUNDWATER DEPTH	NONE	DATE	AT	
3/30/02	ED BY W. BARREIRE		NONE		5/	31/02
	ACE CONDITIONS		NONE			6/02
BACKFILLED: ASH	w/ SPORADIC WEEDS	<u> </u>		=	TYPE	
DEPTH (FEET) SYMBOL	LOG OF MATERIAL	BLOW	MOISTURE CONTENT (%)	DRY DENSITY (PCF)	SAMPLE TY	NOTES
-0 ASH, SLIGHTLY 1 1 2 1 3 1 4 1 5 1 4 1 5 1 6 1 7 1 10 1 11 1 10 1 11 1 10 1 11 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 11 1 12 1 14 1 15 1 16 1 17 1 18 11 20 11 21 11 22 11 23 11 24 11 25 11 26 11 21 <td>MOIST TO MOIST, GRAY TO BLACK.</td> <td>36</td> <td>7</td> <td></td> <td></td> <td></td>	MOIST TO MOIST, GRAY TO BLACK.	36	7			
-30 FN: LOGS KLE	INFELDER COLORADO	DRIVE, UNIT 115 Springs, Co 80919		FIGUR	NO.	<u>B-10</u>

	PROJECT NO	17229	LOG OI	F TEST	BORIN	G K-	8	SHEET 2 OF 2	_
	DRILLING EQUIPMENT CME 55	(w/ AUTOHAM	PROJECT NAME MER) NIXON ASH PIT			LOCA	ATION SEE TE	ST BORING ON PLAN	
0	TYPE OF BIT	4" AUGER	HAMMER DATA: WT. 140 LBS.		ES SURFACE	 , N/A	TOTAL DE		
	STARTED:	5/30/02	DRILLING AGENCY SPECTRUM		GROUNDWATER DEPTH		OF HOLE DATE	AT DRILLING	_
	LU LY COMPLET	ED: 5/30/02	LOGGED BY W. BARREIRE		B CHI	NONE		5/31/02	
	BACKFILL	ED:	SURFACE CONDITIONS ASH W/ SPORADIC WEEDS			NONE		6/6/02	
	IC d								┥
	DEPTH (FEET) SYMBOL		LOG OF MATERIAL			COUNTS MOISTURE CONTENT (Z)	DENSITY DENSITY (PCF)	NOTES	
	30				_ @		DENS DENS (PC		
		ASH, SLIG	HTLY MOIST TO MOIST, GRAY	TO BLACK.	50	/7			1
	32	1=							
		11						ļ	ł
	34								ļ
	36-				3	5			l
	37-11-1								
	38								
	39-11-1	VERY MOIS	T TO WET ZONES FROM 38'-	-42'.	÷.				
	40								
0		7			24	.			
	42								
		7							
	45	/			14				
i	46	CLAY (CL),	STIFF, VERY MOIST TO WET,	LIGHT BROWN.					
	47								
	48								
	49- 50-				10				
	51-						F		
	52								
	53								
	54-	,			1.0				
	55	/						1	
Í	56				13				
	57—	TOTAL DEPTH	l: 56'						
Õ	58-								
	59-								
┝	60			<u> </u>					
	FN: LOGS	KLI	EINFELDER c	4815 LIST DRIVE. DLORADO SPRINGS.	UNIT 115 , CO 80919	F	IGURE NO).: <u>B-11</u>	

	17229	PROJECT NAME ER) NIXON ASH	 РГ			LOCAT	J_L_	TEST	BORING PLAN
TYPE OF BIT	<mark>/ AUTOHAMM</mark> 4" AUGER	HAMMER DATA: WT. 140			ACE N	 /A	TOTAL OF HO	DEPTH LE	5'
	5/30/02	DRILLING AGENCY SPECTRU		GROUNDWA		NONE			DRILLING
		LOCGED BY W. BARREIR		OCFIN		NONE			5/31/02
BACK ILLED:	5/50/02	SURFACE CONDITIONS				NONE			6/6/02
		GRASS/ WEEDS/ CACIT			- s	N N N N N N	2	TYPE	
DEPTH (FEET) SYMBOL		LOG OF MATERIAL			BLOW	MOISTURE CONTENT (%)	DRY DENSITY (PCF)	SAMPLE F	NOTES
-0	4" TOPSOIL	AND GRASS.		=-			[
	CLAY (CL),	SANDY, STIFF, SLIGHTLY	MOIST, LIGHT	BROWN.	12				
2	BEDROCK CLAYSTONE	, SANDY, MEDIUM HARD	TO HARD, SLIGH	ITLY					
4	MOIST TO	DRY, LIGHT BROWN.			6.0.41				
5					50/11			A	
6	TOTAL DEP	TH: 5'							
7-									
8		Net in a	and internet	1					
9		INOT IN A	rea of interest						
10-									6
11									0
12									
13-									
14									
15									
16									
17									
18									
19									
20									
22-									
23-									
24									
25-									
26-									
27-									
28									
29-									
-30		LEINFELDER	(016 LICT	DRIVE, UNIT	115	·			D.: <u>B−12</u>

Bit Mark Description Description <thdescription< th=""> <thdescription< th=""> <t< th=""><th>CME 55 (w/ AUTOHAMMER) NIXON ASH PIT TYPE OF BIT 4" AUGER HAMMER DATA: WT. 140 LBS. DROP 30 INCHES STARTED: 5/30/02 DRILLING AGENCY SPECTRUM GROUDEPTI COMPLETED: 5/30/02 LOGGED BY W. BARREIRE BACKFILLED: SURFACE CONDITIONS SPORADIC WEEDS/BRUSH</th><th></th><th>A TO NONE NONE NONE</th><th>DCATION PLAN TAL DEPTH 29 HOLE 29 DATE AT DRIL 5/31/ 6/6/0</th><th>.5' LING 02</th></t<></thdescription<></thdescription<>	CME 55 (w/ AUTOHAMMER) NIXON ASH PIT TYPE OF BIT 4" AUGER HAMMER DATA: WT. 140 LBS. DROP 30 INCHES STARTED: 5/30/02 DRILLING AGENCY SPECTRUM GROUDEPTI COMPLETED: 5/30/02 LOGGED BY W. BARREIRE BACKFILLED: SURFACE CONDITIONS SPORADIC WEEDS/BRUSH		A TO NONE NONE NONE	DCATION PLAN TAL DEPTH 29 HOLE 29 DATE AT DRIL 5/31/ 6/6/0	.5' LING 02
States 5/30/02 Delia of all interest Dote Tore interest None Diff AT Delia of all interest Image: Strate interest Strate interest Strate interest None Strate interest Strate interest None Strate interest Strate interest None Strate interest Strate interest Strate interest None Strate interest Stratere Strate	STARTED: 5/30/02 DRILLING AGENCY SPECTRUM GROUDEPTI COMPLETED: 5/30/02 LOGGED BY W. BARREIRE BACKFILLED: SURFACE CONDITIONS BACKFILLED: SURFACE CONDITIONS SPORADIC WEEDS/BRUSH		NONE NONE NONE NONE	DATE AT DRIL 5/31/ 6/6/0	LING 02
EDPRACTION 5/30/02 LOCE OF W. BARREIRE NONE 5/31/02 MARTILLD SPORADIC WEEDS/DRUSH NONE 6/6/02 EGG G LOC OF MATERIAL 00 gr gr gr gr gr gr gr gr gr gr gr gr gr	COMPLETED: 5/30/02 LOGGED BY W. BARREIRE BACKFILLED: SURFACE CONDITIONS SPORADIC WEEDS/BRUSH	·		5/31/ 6/6/(02
ECONALTED SUBJECT NOME S/31/02 BROWNED SUPPRECISIONED STREET NOME S/31/02 EGG G LOC OF MATERIAL STREET STREET <t< td=""><td>Image: Completed: 5/30/02 Logged by W. BARREIRE BackFilled: SURFACE CONDITIONS SPORADIC WEEDS/BRUSH</td><td>BLOW COUNTS</td><td>NONE</td><td>6/6/(</td><td></td></t<>	Image: Completed: 5/30/02 Logged by W. BARREIRE BackFilled: SURFACE CONDITIONS SPORADIC WEEDS/BRUSH	BLOW COUNTS	NONE	6/6/(
BANKED SPORADIC WEEDS/BRUSH NOME 6/6/02 Image: Stress of the stress of the	BACKFILLED: SPORADIC WEEDS/BRUSH	BLOW COUNTS		ш.	
1 CLAY (OL). SOME SLIGHTLY SANDY TO SANDY LENSES. 2 SULFATE STRINGERS. SUCHTLY MOIST. SOME 3 12 3 12 3 12 3 12 3 12 3 12 3 12 3 12 3 12 10 17 11 12 12 10 13 12 14 12 15 16 16 7 17 20 18 20 19 20 21 20 22 21 12 20 23 21 14 20 24 20 25 8EDROCK CLAYSTONE, SUGHTLY SANDY, HARD, SUGHTLY MOIST, UGHT BROWN, UGHT B		BLOW	URE ENT SITY	ш	12
1 CLAY (CL), SOME SUCHTLY SANDY TO SAMOY LENSES. MEDIUM STIFF TO VERY STIFF, SUCHTLY MOIST, SOME 3 4 5 6 7 8 9 10 11 12 Not in area of interest 13 14 15 16 17 18 19 20 21 22 23 24 25 8 17 18 19 20 21 22 23 24 25 8 18 19 20 21 22 23 24 25 8 26 8 27 28 29 20 20 21 22 23 24 25 8 26 27 28			CONT CONT (% DENS	ON (PCF)	TES
23 24 25 26 26 27 27 3 29 TOTAL DEPTH 29.5' 20/6.5	CLAY (CL). SOME SLIGHTLY SANDY TO SANDY LENSES. MEDIUM STIFF TO VERY STIFF. SLIGHTLY MOIST, SOME SULFATE STRINGERS. SLIGHTLY POROUS, LIGHT BROWN. Not in area of interest	12			
	23 24 25 26 26 27 27 27 29 29 29 23 24 25 26 26 26 26 26 27 27 29 29 29 20 20 20 20 20 20 20 20 20 20	50/6.5			
FN: LOGS KIEINEELDER AND UNIT 115 COUDE NO. P-13			2.2		

PRO	DJECT NO.	17229	LO	G OF	TEST	BOR	ING				EET OF
		/ AUTOHAMM	PROJECT NAME (ER) NIXON A	SH PIT				LOCAT	LOCA	HON	BORING PLAN
	E OF BIT	4" AUGER	HAMMER DATA: WT.		DROP 30 IN		FACE NATION		TOTAL OF HO		9.5'
-	STARTED:	5/30/02	DRILLING AGENCY SP	ECTRUM		GROUNDW DEPTH	ATER	NONE	DAŤ	E	TORILLING
DATE	COMPLETED:		LOCCED BY W. B					NONE			5/31/02
à	BACKFILLED:		SURFACE CONDITIONS					NONE			6/6/02
DEPTH			LOG OF MA	TERIAL,			BLOW COUNTS	MOISTURE CONTENT (%)	DRY DENSITY (PCF)	SAMPLE TYPE	NOTES
-0 1 2	$\frac{1}{2}$, SLIGHTLY SANDY, WN TO BROWN.	STIFF, SLI	GHTLY MOI	б т ,					
3 4 5		BEDROCK CLAYSTONE OLIVE-BRO	E, HARD TO VERY H DWN.	IARD, SLIG	HTLY MOIS	r.	50/1	1			
6 7 8											
9 10	「おいか」で「「「「「「「」」」」	TOTAL DEF	 РТН: 9.5'		<u></u>		50/8				
11 12	_							2			
13 14	_										
15		-									
16 17											
18 19	_										
20											
21											
22											
23		1									
24											
25	-										
26	4										
27 28	4										
29											
-30 7		К	LEINFELDE	R		DRIVE, UNIT			FIGUR	ΕN	0.: <u>B-14</u>

				BORING LOG	SH	EET <u>1</u> 0)F2						BC	DRING LOG	54	CET CF 2
PROJE	CT NAW	·E	ASH	STORAGE SYSTEM	PR	GJECT NO	<u>77-101-1</u>		PROJE		٤	ASH	STORAGE SYSTEM			OJECT NO. K77-101-1
'	WC 77-2	10	PR	POJECT LOCATION FOUNTAIN, Colorado		DATE 11-11-77 RIG CME-55										TE 11-11-77 G CME-55
L			GE	OLOGIST J. Hash DRILLER Jerry/CADS	- w/	TER ENTERS	None	•	L			GE(EOLOGIST J. Hash	_DRILLER_JETTY/CADS	RI 	G CME-55
SURFA	CE E.	NOI TAV	1	5472 ELEVATION DATUM USC & GS		detected AT	D		SURFA	E ELC	VATION	5	5472 ELEVATION	DATUM USC & GS		detected ATD
OCPTH 0	TYPE	REC	RESIST	DESCRIPTION	J. S. C	SPECIAL NO	TES AND]	DEPTH		AMPLE	Incover.	DESCRIPT		U.S.C	SPECIAL NOTES AND
				Stiff, light tan brown, desiccated, Silty	CL	foring adv	anced	1	25 -	TYPE	REL	RESIST		brown, Silty CLAY with	CL	FIELD OBSERVATIONS
-	1			- CLAY with caliche		with 4".di	a. C.F.A	4	-				_ gravel	,,	-	· _
-	{				$\left \right $		-		1 -						_	_
-	1			- -	4	-	-						SHALE: Hard, olive	e brown, weathered,	SH	
						-									7	
	S	$\frac{12}{12}$	5		1			1	-	5	12	ד8 31	+		1	-
5-		- 6			1		6	1 ·	30 —		12	- 31	+	-	-	
-	ł				-			ŀ	-				-		_	WC < PL
-]			-		WC < PL		. *	_							
]														7	
							-	1	-				-		-	-
-	S	12	5 10		-		-	ł .	-	s	5	50	÷ .		-	
10	<u>-</u>	12	10		-		. 	ł.	35-		<u>-5</u> 5	<u>50</u> 5''				Bottom of Boring
	Į								1							34.4'
]	-						7	
-			Į	-	1		-	1.	-				F		-	-
	ł						· -	· ·	-				- ·		-	· _
-	S	12					· · ·		_				_			
15		$\frac{12}{12}$	1.2					}	·							
							•]					·	-	٦	
				- Becoming brown	1		-	1	-				- ·		-	
-						· .	. <u> </u>	ł	-				–		-	-
-				-			·	4	_						·	
] · []								
	S	$\frac{12}{12}$	4]		-].	.				F i		7	
20				— —	1			1	; -			.	-	-		.
-				-			·, -	1	- 1				-		-	_
				 			· *:•• -	Į.	1 .						· _	
							· · ·	No.								· ·
				-	1		-	1	1						-	
-	S	$\frac{12}{12}$	12	Very stiff, brown, Silty CLAY with gravel	w/				-				⊢ · · ·	•	-	· -
25 -		1_12_	18	1	GP	L:	.	J . • .			L		<u> </u>			l

WOODWARD-CLYDE CONSULTANTS

FIGURE NO. C-53

WOODWARD-CLYDE CONSULTANTS

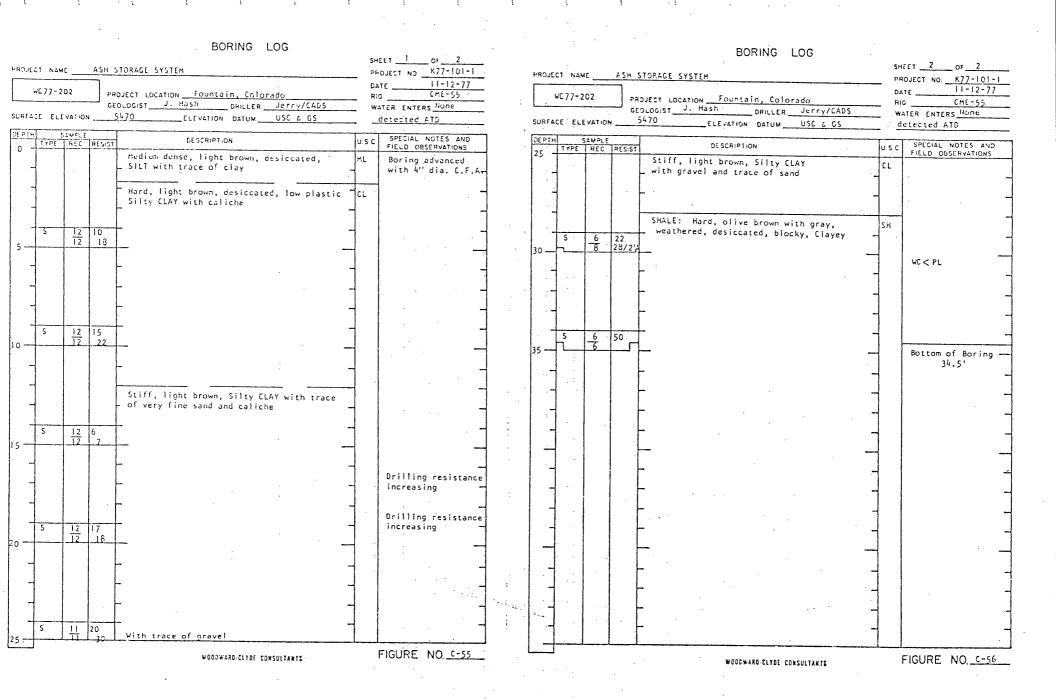

1

FIGURE NO. C-54

]

]

 $\langle r \rangle$

				BORING LOG	Sr	EET 1. OF 2	•					BORING LOG	
				STORAGE SYSTEM	Pi	ROJECT NC <u>K77-101-1</u>		PROJEC	CT NAM	۱٤ <u> </u>	ASH	SHEETOF STGRAGE SYSTEM PHOJECT NOK77-101-1	
L	CE E	203 .E +4TIC	c	ROJECT LOCATION FOUNTAIN, Colorado EOLOGIST J. HUSH DRILLER JERRY/CADS 5465 ELEVATION DATUM USC 6 GS		IG CHE-55 ATER ENTERS Hone delected ATD		L	WC 7 7 - 2		CI	PROJECT LOCATION <u>Fountain</u> Colorado RIG <u>11-12-77</u> REOLOGIST J. Hash DRILLER Jerry/CADS WATER ENTERS None 5465 ELEVATION DATUM USC 5 GS detected ATD	
<u>18 PTH</u> 0 -		SLVP_ REC	C RES-S	DE SCHIPTION	U.S.C	SPECIAL NOTES AND FIELD OBSERVATIONS] ••• •	DEPTH		SAMPLE		Cerected ATD	
-				Medium dense, light brown, poorly graded - SILT		Boring advanced with 4" dia. C.F.A .		25 _	TYPE	REC	RESIST	Dense, light brown, poorly graded, Silty, SM fine grained, angular SAND with trace of	
-				-		-		-				- SHALE: Hard, brown with gray, weathered, - SH fissile bedded, Clayey	
-	5	12	10 20	·	-] _						- WC < PL	
5			20	Hard, brown, desiccated, low plastic, Silty_ CLAY Becoming stiff	_CL			30	\$	6/6	50		
-					-	_							
-	S	12	8	 -	-	- -		-					
0		$\frac{12}{12}$	7	- -			i	35	5	3/3	50 3''	Bottom of Boring 34.25'	
-						-							
-				-	-	-	.'	-					
5 —	S	$\frac{12}{12}$	15 20_	Becoming hard with caliche									•
1						-	•	-	."				
				Becoming very stiff with trace of very fine grained sand and trace of gravel	- ·	-							
c —	5	$\frac{12}{12}$	6 9			-		-					
-				-		-							·
_				Dense, light brown, poorly graded, Silty, fine grained, angular SAND with trace of gravel	БН		Sec.		•				
5	5	$\frac{12}{12}$	15 16					-					
				WOODWARD-CLYDE CONSULTANTS		FIGURE NOC-57	I			· ·		WOODWARD-CLYDE CONSULTANTS FIGURE NO. C-58	
									:				
						•				: :			
				· · · · ·			-		•				
				• • • •			Ţ		j.]		، ل

				•	•						
BORING LO				•	:	:			BORING LOG		
ECT NAMEASH_SIGRAGE_SYSTEM		SHEET 1 OF 2 PROJECT NO. K77-101-1				· ·		STOPAGE SYSTEM			EET OF 2
WC77-204 PROJECT LOCATION Fountain, Colorad		DATE 11-18-77					7				ROJECT NO <u>K77-101-1</u>
GEOLOGIST J. Hash DRILLER J	rrv/CLDS	RIG CME-55 WATER ENTERS NONE		Ļ	4C 7 7 - 2	04		ROJECT LOCATION FO	untain, Colorado DRULERJerry/CADS	R.	G CME-55
ACE ELEVATION ELEVATION DATUM	SC & GS	detected ATD		SURFA		VATION		5466 ELE #	ATION DATUM USC 6 GS		ATER ENTERS None detected ATD
TYPE REC RESIST DESCRIPTION	u, S.	FIELD DESERVATIONS	·	<u>рертн</u> 25	TYPE	REC	RESIST	DESC	RIPTION	U.S C	SPECIAL NOTES AND FIELD OBSERVATIONS
Hard, light brown, desiccated, 	low plastic, CL	Boring advanced with 4" dia. C.F.A .	•					SAME: SHALE: Sandy, Clayey	Hard, olive brown, weathered	, SH	FIELD OBSERVATIONS
	_					:				1	WC < PL
		WC < PL								-	
					:			-		1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					S	6/6	50	*		1	
	1			30 -		.			-		Bottom of Boring
Becoming stiff		Drilling resistance decreased			·					1	
										1	
<u>S</u> 10 6								[.		1	
S <u>10</u> 6 <u>12</u> 6					·			Ĺ.		1	
					•				-	1	
		Drilling resistance						[1	
Becoming very stiff			ı	1	•			Γ		7	
			-					Γ		1	
s <u>10</u> 17 <u>12</u> 15					11			· ·		1.	
			÷						-	1	-
Dense, light brown, poorly gra _ fine grained, Silty SAND with	some very - E		-	[]			•			1	-
thin, interbedded Sandy SILT	-ML									7	-
5 12 14]						1	
12 16 Dense, light brown, poorly gra	ded, fineSC			$\lfloor $: .				: • ·	7	
grained SAND in a Silty CLAY m some gravel							:		-	1	
SHALE: Hard, olive brown, wea Clayey	hered, Sandy, SH			$\left \right]$	·					1	
		and the second sec					·			1	
	_]						7	
s <u>s 50</u> <u>5 8</u>					;				:		
WDGDWARD-CLYDE CONSI	LTANTS	FIGURE NO. C-59		أربيهما		· - 5	•	¥	VOODWARD CLYDE CONSULTANTS		FIGURE NO. C-60
· ·	• .	·							:		
									:	•	
							1.		· · ·		
					• •						-
				•							

5	J	A.	.'6	-	7	7
---	---	----	-----	---	---	---

ļ

1 J

-

k

COLORADO DIVISION OF WATER RESOURCES 1313 Sherman Street - Room 818 Denver, Colorado 80203

WITHIN 60 OF THE WI ON, TYPE INK.	DAYS OI ORK DES OR PRIN	F COMPLETION DORN CRIBED HERE TIN BLACK WELL COMPLETION A PERMIT NUM	er, Colo ND PUM IBER Pe	et - Room 818 rado B0203 MP INSTALLATION REPORT ermit Pending, Verbal approval by Reiner G. subold, Chief of Ground Water Operation
	NNF R	City of Colorado Springs		% of the % of Sec. 30, 31 6
ADDRES	s <u>30</u>	S. Nevada, Suite 201, Colo Spr	<u>ings</u>	T. <u>16 S. R. 65 W. 6th</u>
DATE CO	MPLET	ED December 5,	19 <u>85</u>	HOLE DIAMETER
		WELL LOG # 2A	- 11	<u>6 3/4 in. from 0 to 53 ft.</u>
From	То	Type and Color of Material	Water Loc.	in, from to ft.
0	10	Decomposed buff soft colorad		DRILLING METHOD Rotary w/air
10	53	shale (dry) Grey to black hard shale, dry		CASING RECORD: Plain Casing
				Size _4"_ & kind _ PVC from + 8" to3
		Hole was dry the entire depth		Size & kind from to
		Set Aluminum water meter shel & cover	-	Size & kind from to
				Perforated Casing
		Poured 6' square 6" to 4" concrete slab 12/3/85 with 2" X 4' pipe wet in each		Size _4"_ & kind <u>PVC</u> from _13! to _53
		corner.		Size & kind from to
				Size & kind from to
				GROUTING RECORD
				Material Neat Cement
				Intervals 0 - 10'
				Placement MethodPoured
				GRAVEL PACK: Size 1/4" gravel
				Interval101 to 531
				TEST DATA
				Date TestedDry11/13/85,
				Static Water Level Prior to Test
				Type of Test Pump
				Length of Test
		TOTAL DEPTH 53'		Sustained Yield (Metered)
	i Use	additional pages necessary to complete log.		Final Pumping Water Level

. TYPE (NER	PERMIT NUMBE	PUMP INSTALLATION REPORT <u>R Permit Pending</u> , Verbal approval by Reiner G. Haubold, Chief of Ground Water Operation <u>Y</u> of the <u>Y</u> of Sec.30, 31 &
DRES	s30.	S. Nevada, Colorado Springs, Co.	T16S, R65W,6th
ATE CO	MPLET	ED <u>December 6, 1985</u> , 19	85 HOLE DIAMETER
		WELL LOG # 3 A	$6_{3/4}$ in. from to ft.
rom	То		nter in, from to ft.
0	23	Damp oxidized buff colored shale, water at 23' 1 Black shale	<u>gpm</u> DRILLING METHOD <u>Rotary</u> w/air CASING RECORD: Plain Casing
23 23	53	Hard black shale	Size 4" & kind from to
			Size & kind from to
		Poured 6' square concrete slab 6" - 4", 12/3/85 with 2" X 4' long pipe set in	Size & kind from to
		corner	Perforated Casing
		Set Aluminum water meter shell and cover 12/4/85	Size <u>4" & kind <u>XX PVC</u> from <u>13</u> to <u>-</u></u>
			Size & kind from to
		L	Size & kind from to
			GROUTING RECORD
			Material
1			Intervals <u>0 - 10'</u>
			Placement Method
			GRAVEL PACK: Size 1/4" gravel
	-		Interval 10' - 53'
			TEST DATA
		52 	Date Tested <u>November 13, 1985</u>
			Static Water Level Prior to Test
		20	Type of Test Pump <u>Air bail</u>
			Length of Test1 hr.
			Sustained Yield (Metered) <u>1/2 gpm</u>
	l	TOTAL DEPTH	Final Pumping Water Level 231

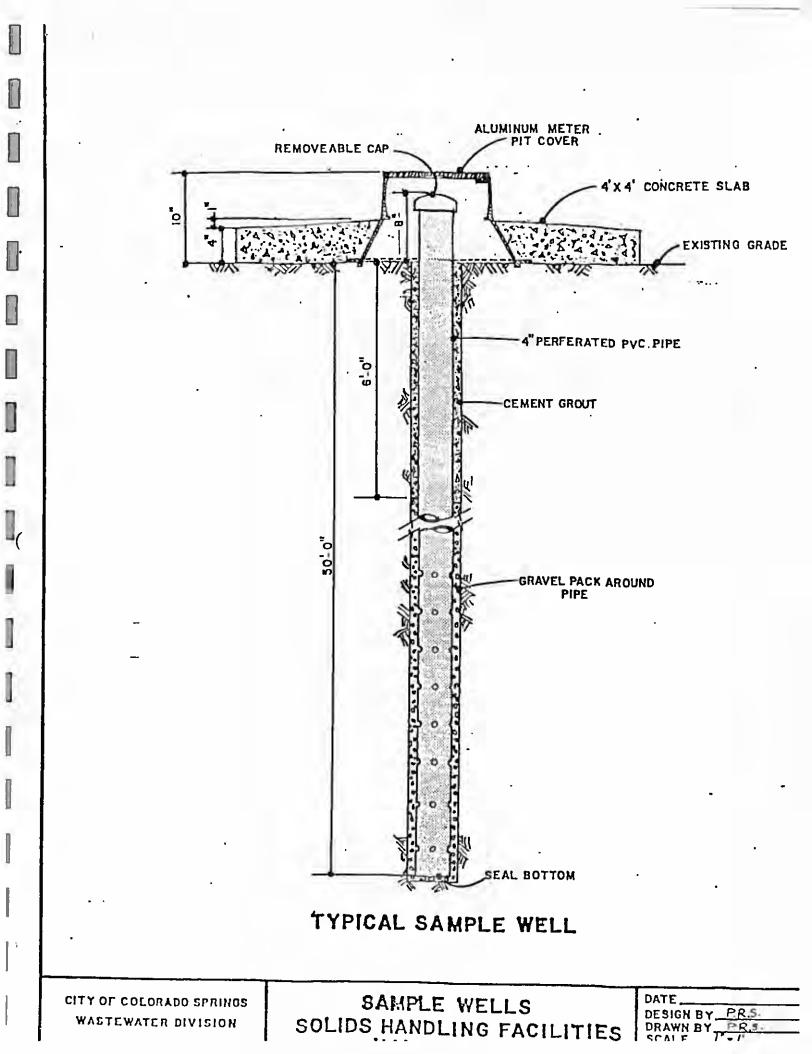
WITHIN 60 DF THE WO DN. TYPE NK.	DAYS OF	TIN BLACK COLORADO SPEIDES	man Stro er, Colo ND PUM IBER _P II	F WATER RESOURCES ret - Room 818 rado 80203 MP INSTALLATION REPORT <u>crmit Pending</u> , Verbal approval by Reine aubold, Chief of Ground Water Operation % of the% of Sec. 30.	
WELLOV	- 30 9	S. Nevada, Suite 201, Colo Spri	ngs	T. <u>16</u> <u>S</u> <u>R. <u>65</u> <u>W</u> <u>6</u></u>	th
		ED December 5	19 <u>85</u> Water	HOLE DIAMETER $6 \frac{3}{4}$ in from 0 to 53' ft.	
From	То	Type and Color of Material	Loc.	in. from to ft.	
0	23	Damp buff oxidized shale, and	23'	in. from to ft. DRILLING METHODRotary_w/air	
23	53	damp from 12/ to 23', Black - Green hard shale, dry from 27' to 53' by examing large cuttings		CASING RECORD: Plain Casing Size <u>4"</u> & kind <u>PVC</u> from <u>+ 8"</u> to	
1		Set Aluminum meter shell and cover.		Size & kind from to Size & kind from to	
		Poured 6' square, 6" - 4" concrete slab with 2" X 4' long pipe set in each corner 12/5/85		Perforated Casing Size <u>4"</u> & kind <u>PVC</u> from <u>13</u> to Size <u> </u>)
				GROUTING RECORD Material <u>Neat cement</u> Intervals <u>0 - 10</u>	
				Placement Methodoured	
				GRAVEL PACK: Size <u>1/4" gravel</u> Interval <u>10' - 53'</u>	
	9 ¹³	A		TEST DATA Date Tested <u>November 15</u> 231	
				Static Water Level Prior to Test Type of Test PumpAir_bail	
				Length of Test1 hr.	
		TOTAL DEPTH53'		Sustained Yield (Metered) <u>8 gpm</u>	
	ı Use	additional pages necessary to complete log.		Final Pumping Water Level23'	· .)

Į

1

J

B


THIS FORM MUST BE SUBMITTED WITHIN 60 DAYS OF COMPLETION OF THE WORK DESCRIBED HERE-ON, TYPE OR PRINT IN BLACK

l

COLORADO DIVISION OF WATER RESOURCES

1313 Sherman Street - Room 818 Denver, Colorado 80203

ON, TYPE NK.	OR PRINT	PERMIT NU	MBER P	MP INSTALLATION REPORT <u>ermit Pending</u> , Verbal approval by R aubold, Chief of Ground Water Opera % of the% of Sec	LIUN
WELL O		City_of_Colorado_Springs		A G G G W	6th
ADDRES	s <u>30</u>	<u>So. Nevada, Suite 201, Colo Sp</u>	rings	T. <u>16</u> <u>S</u> , R. <u>65</u> W	
		December 6		HOLE DIAMETER	
DATE C				$6_3/h$ in from 0 to 53' ft.	
	_	WELLLOG WEA	Water		
From	То	Type and Color of Material	Loc.	in, from to ft,	
0	8	Dry oxidized Buff colored		in, from to ft.	
U	0	shale	-	DRILLING METHOD Rotary w/air	
8	22	Damp oxidized grey shale	22'	CASING RECORD: Plain Casing	
22	53	l gpm Hard Black Green shale, dry		Size <u>4" & kindpvc</u> from <u></u> +	
		from 25' to 53'		Size & kind from	to
				Size & kind from	to
		Set Aluminum water meter she	101	Size & kind	
		and cover		Perforated Casing	
		Poured 6' square 6' - 4'		Size _4" & kind PVC from13	to 53'
		concrete slab with 2' x 4'			
		long steel pipe in each corn	er	Size & kind from	to
				Size & kind from	to
				GROUTING RECORD	
			1.1	Material <u>Neat cement</u>	
	100				
				Intervals0 10'	
				Placement MethodPoured	
	177			GRAVEL PACK: Size <u>1/4"</u> gravel	16. G
				Interval 10' - 53'	
					4
			_	TEST DATA	
				Date TestedNovember_15,	1
	32				
				Static Water Level Prior to Test 22	
-				Type of Test PumpAir_bail	
				Length of Test1_hr	-
		Col		Sustained Yield (Metered) <u> </u>	
	1	TOTAL DEPTH <u>53'</u>	•	Final Pumping Water Level 22'	
L	USE 3	idditional pages necessary to complete log.		j i mai rumping water Level	

PROJECT #: # 09959105

RESOURCE GEOSCIENCE, INC.

PROJECT NAME: Clear Spring Ranch

ADDRESS:

CITY / STATE: Fountain, CO

3740 Wabash Street Colorado Springs, Colorado

WELL # WW-7A

		SUBSURFACE PROFILE			SAMPL	E		
Depth	Lithology	Description	Number	Type	PID Reading	Blow Counts	Lab Number	WELL DETAIL
0		GROUND SURFACE				-		
		CLAY moderate density, low molsture, low cohesion, moderate plasticity, tan						
5 10 15		CLAY moderate to high density, low to moderate moisture, moderate cohesion, moderate to high plasticity, brown						
		SHALE high density, low moisture, moderate cohesion, moderate to high plasticity, greyish-brown END OF BORING						
20	ication li	nes represent approximate boundary lines between soil and rock the transition may be gradual						
E	DRILL DATE: 9/5/07 ENGINEER: Darrell Robbins DRILLER: RGJ DRILL METHOD: HSA = Hollow Stem Auger HOLE SIZE: 8"			NATER ELE	VATION: WATER: Non	e Encountered	at 0 Hrs	

Appendix B Laboratory Results – February 2022 Groundwater Sampling Event

Colorado Springs Utilities It's how we're all connected

Laboratory Report For:

CCR Landfill Alternative Contaminant Source Demonstration

Colorado Springs Utilities Environmental Services

Report Authorized by: Wendy M Asay

Title: Environmental Specialist

Report Date: March 8, 2022

Report generated by: Wendy M. Asay

Colorado Springs Utilities Laboratory Services Section certifies that the test results meet all approved method and Laboratory Quality Assurance Plan requirements unless otherwise noted

Samples

467358	8-Feb-2022 10:25	Fort Carson Well #2A
467359	8-Feb-2022 11:45	Fort Carson Well #1A
467360	8-Feb-2022 13:40	Clear Spring Ranch Wastewater Well #5A
467361	8-Feb-2022 14:37	Clear Spring Ranch Wastewater Well #6A
467362	8-Feb-2022 11:24	Crooked Canyon Well #1
467363	8-Feb-2022 13:10	Fort Carson Well #3B
467364	8-Feb-2022 13:46	Fort Carson Well #3A
467365	8-Feb-2022 14:50	Sand Canyon Well #8
467366	8-Feb-2022 15:36	Sand Canyon Well #10
467367	8-Feb-2022 15:32	Equipment Blank
467368	8-Feb-2022 00:00	Field Duplicate sample
467395	9-Feb-2022 09:55	Sand Canyon Well #7
467396	9-Feb-2022 10:58	Sand Canyon Well #12
467397	9-Feb-2022 11:54	Sand Canyon Well #13
467398	9-Feb-2022 12:28	Sand Canyon Well #14
467399	9-Feb-2022 13:10	Sand Canyon Well #2
467400	9-Feb-2022 14:10	Sand Canyon Well #3
467401	9-Feb-2022 14:52	Sand Canyon Well #11
467402	9-Feb-2022 10:30	Fort Carson Well #1
467403	9-Feb-2022 11:22	Fort Carson Well #2
467404	9-Feb-2022 13:59	Clear Spring Ranch Wastewater Well #3A
467405	9-Feb-2022 15:48	Sand Canyon Well #9
467406	9-Feb-2022 00:00	Field Duplicate sample
467407	9-Feb-2022 16:03	Equipment Blank

LIMS #: 467358 Sample Date: 2/8/2022 10:25:28 AM Sample Point: FC_2A Sample Point Description: Fort Carson Well #2A Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.5	SU	2.0			1	_
+	SM_2550_B	Temperature Centigrade (Field)	11.8	degrees C	0.000			1	
+	SM_2510_B	Conductivity	10200	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	138	mV	0.000			1	
	NA	Depth to Water	15.20	ft.	0.0000			1	
	SM_2320_B	Alkalinity (Bicarbonate)	367	mg/L	5			1	
		Alkalinity (Carbonate)	<1	mg/L	1			1	
		Alkalinity (Total)	367	mg/L	5			1	
	SM_4500_FC	Fluoride (Total)	1.23	mg/L	0.10			1	
	EPA_410_4	Chemical Oxygen Demand	50	mg/L	30			1	
	EPA_300_0	Chloride	168	mg/L	0.50	D	02/10/2022	1	
		Nitrate as Nitrogen	0.12	mg/L	0.10		02/10/2022	1	
		Nitrite as Nitrogen	<0.10	mg/L	0.10		02/10/2022	1	
		Sulfate	7610	mg/L	0.50	D	02/09/2022	1	
	EPA_350_1	Ammonia (Total) as Nitrogen	<0.2	mg/L	0.2		02/14/2022	1	
	EPA_353_2	Nitrite+Nitrate as Nitrogen	0.34	mg/L	0.10	EB	02/14/2022	1	
	EPA_200_8	Manganese (Total Recoverable)	174	ug/L	0.50	D	02/14/2022	1	
		Selenium (Total Recoverable)	4.1	ug/L	1.0	D	02/14/2022	1	
	SM_2540_C	Total Dissolved Solids	12900	mg/L	10			1	
	EPA_200_7	Boron (Total Recoverable)	746	ug/L	20.0		02/24/2022	1	
		Calcium (Total Recoverable)	425000	ug/L	100	T1/D	02/11/2022	1	
		Iron (Total Recoverable)	1210	ug/L	10.0		02/11/2022	1	
		Magnesium (Total Recoverable)	636000	ug/L	10.0	T1/D	02/11/2022	1	
		Potassium (Total Recoverable)	15100	ug/L	300		02/11/2022	1	
		Sodium (Total Recoverable)	2370000	ug/L	200	T1/D/B1	02/11/2022	1	

LIMS #: 467359 Sample Date: 2/8/2022 11:45:28 AM Sample Point: FC_1A Sample Point Description: Fort Carson Well #1A Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.2	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	13.0	degrees C	0.000			1	
+	SM_2510_B	Conductivity	22800	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	164	mV	0.000			1	
	NA	Depth to Water	17.58	ft.	0.0000			1	
	SM_2540_C	Total Dissolved Solids	29000	mg/L	10			1	
	SM_2320_B	Alkalinity (Bicarbonate)	803	mg/L	5			1	
		Alkalinity (Carbonate)	<1	mg/L	1			1	
		Alkalinity (Total)	803	mg/L	5			1	
	SM_4500_FC	Fluoride (Total)	0.64	mg/L	0.10			1	
	EPA_410_4	Chemical Oxygen Demand	200	mg/L	30			1	
	EPA_350_1	Ammonia (Total) as Nitrogen	<0.2	mg/L	0.2		02/14/2022	1	
	EPA_353_2	Nitrite+Nitrate as Nitrogen	31	mg/L	0.10	D	02/14/2022	1	
	EPA_200_8	Manganese (Total Recoverable)	743	ug/L	0.50	D	02/14/2022	1	
		Selenium (Total Recoverable)	20.1	ug/L	1.0	D	02/14/2022	1	
	EPA_200_7	Boron (Total Recoverable)	1090	ug/L	20.0		02/24/2022	1	
		Calcium (Total Recoverable)	421000	ug/L	100	T1/D	02/11/2022	1	
		Iron (Total Recoverable)	208	ug/L	10.0		02/11/2022	1	
		Magnesium (Total Recoverable)	1440000	ug/L	10.0	T1/D	02/11/2022	1	
		Potassium (Total Recoverable)	24500	ug/L	300		02/11/2022	1	
		Sodium (Total Recoverable)	5890000	ug/L	200	T1/D/B1	02/11/2022	1	
	EPA_300_0	Chloride	1390	mg/L	0.50	D	02/10/2022	1	
		Nitrate as Nitrogen	24.2	mg/L	0.10	D	02/10/2022	1	
		Nitrite as Nitrogen	0.26	mg/L	0.10		02/10/2022	1	
		Sulfate	16900	mg/L	0.50	D	02/25/2022	1	

LIMS #: 467360 Sample Date: 2/8/2022 1:40:28 PM Sample Point: WW_5A Sample Point Description: Clear Spring Ranch Wastewater Well #5A Collection Comments: Sample Type: GRAB

Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.2	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	13.0	degrees C	0.000			1	
+	SM_2510_B	Conductivity	8220	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	163	mV	0.000			1	
	NA	Depth to Water	23.76	ft.	0.0000			1	
	SM_2540_C	Total Dissolved Solids	8820	mg/L	10			1	
	SM_2320_B	Alkalinity (Bicarbonate)	584	mg/L	5			1	
		Alkalinity (Carbonate)	<1	mg/L	1			1	
		Alkalinity (Total)	584	mg/L	5			1	
	SM_4500_FC	Fluoride (Total)	0.65	mg/L	0.10			1	
	EPA_410_4	Chemical Oxygen Demand	175	mg/L	30			1	
	EPA_300_0	Chloride	374	mg/L	0.50	D	02/10/2022	1	
		Nitrate as Nitrogen	116	mg/L	0.10	D	02/10/2022	1	
		Nitrite as Nitrogen	0.23	mg/L	0.10	D	02/10/2022	1	
		Sulfate	5040	mg/L	0.50	D	02/10/2022	1	
	EPA_350_1	Ammonia (Total) as Nitrogen	<0.2	mg/L	0.2		02/14/2022	1	
	EPA_353_2	Nitrite+Nitrate as Nitrogen	160	mg/L	0.10	D	02/14/2022	1	
	EPA_200_8	Manganese (Total Recoverable)	401	ug/L	0.50	D	02/14/2022	1	
		Selenium (Total Recoverable)	205	ug/L	1.0	D	02/14/2022	1	
	EPA_200_7	Boron (Total Recoverable)	832	ug/L	20.0		02/24/2022	1	
		Calcium (Total Recoverable)	477000	ug/L	100	T1/D	02/11/2022	1	
		Iron (Total Recoverable)	62.4	ug/L	10.0	EB	02/11/2022	1	
		Magnesium (Total Recoverable)	468000	ug/L	10.0	T1/D	02/11/2022	1	
		Potassium (Total Recoverable)	6960	ug/L	300		02/11/2022	1	
		Sodium (Total Recoverable)	1580000	ug/L	200	T1/D/B1	02/11/2022	1	

LIMS #: 467361 Sample Date: 2/8/2022 2:37:28 PM Sample Point: WW_6A Sample Point Description: Clear Spring Ranch Wastewater Well #6A Collection Comments: Sample Type: GRAB

Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.2	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	13.4	degrees C	0.000			1	
+	SM_2510_B	Conductivity	38600	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	207	mV	0.000			1	
	NA	Depth to Water	12.56	ft.	0.0000			1	
	SM_2540_C	Total Dissolved Solids	52200	mg/L	10			1	
	SM_2320_B	Alkalinity (Bicarbonate)	1570	mg/L	5			1	
		Alkalinity (Carbonate)	<1	mg/L	1			1	
		Alkalinity (Total)	1570	mg/L	5			1	
	SM_4500_FC	Fluoride (Total)	3.32	mg/L	0.10			1	
	EPA_300_0	Chloride	750	mg/L	0.50	D	02/10/2022	1	
		Nitrate as Nitrogen	567	mg/L	0.10	D	02/10/2022	1	
		Nitrite as Nitrogen	<0.10	mg/L	0.10	D/P4	02/10/2022	1	
		Sulfate	31500	mg/L	0.50	D	02/25/2022	1	
	EPA_350_1	Ammonia (Total) as Nitrogen	3.3	mg/L	0.2		02/14/2022	1	
	EPA_353_2	Nitrite+Nitrate as Nitrogen	750	mg/L	0.10	D	02/14/2022	1	
	EPA_200_8	Manganese (Total Recoverable)	1040	ug/L	0.50	D	02/14/2022	1	
		Selenium (Total Recoverable)	412	ug/L	1.0	D	02/14/2022	1	
	EPA_200_7	Boron (Total Recoverable)	1920	ug/L	20.0		02/24/2022	1	
		Calcium (Total Recoverable)	425000	ug/L	100	T1/D	02/11/2022	1	
		Iron (Total Recoverable)	1130	ug/L	10.0		02/11/2022	1	
		Magnesium (Total Recoverable)	1410000	ug/L	10.0	T1/D	02/11/2022	1	
		Potassium (Total Recoverable)	72800	ug/L	300		02/11/2022	1	
		Sodium (Total Recoverable)	13700000	ug/L	200	T1/D/B1	02/11/2022	1	
	EPA_410_4	Chemical Oxygen Demand	165	mg/L	30			1	

LIMS #: 467362 Sample Date: 2/8/2022 11:24:28 AM Sample Point: CC_1 Sample Point Description: Crooked Canyon Well #1 Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	6.7	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	14.5	degrees C	0.000			1	
+	SM_2510_B	Conductivity	24500	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	178	mV	0.000			1	
	NA	Depth to Water	17.60	ft.	0.0000			1	
	SM_2540_C	Total Dissolved Solids	34100	mg/L	10			1	
	SM_2320_B	Alkalinity (Bicarbonate)	588	mg/L	5			1	
		Alkalinity (Carbonate)	<1	mg/L	1			1	
		Alkalinity (Total)	588	mg/L	5			1	
	EPA_410_4	Chemical Oxygen Demand	210	mg/L	30			1	
	EPA_300_0	Chloride	1690	mg/L	0.50	D	02/10/2022	1	
		Nitrate as Nitrogen	20.6	mg/L	0.10	D	02/10/2022	1	
		Nitrite as Nitrogen	0.59	mg/L	0.10	D/H	02/10/2022	1	
		Sulfate	21200	mg/L	0.50	D	02/10/2022	1	
	EPA_350_1	Ammonia (Total) as Nitrogen	0.2	mg/L	0.2		02/14/2022	1	
	EPA_353_2	Nitrite+Nitrate as Nitrogen	26	mg/L	0.10	D	02/14/2022	1	
	EPA_200_8	Manganese (Total Recoverable)	470	ug/L	0.50	D	02/14/2022	1	
		Selenium (Total Recoverable)	184	ug/L	1.0	D	02/14/2022	1	
	EPA_200_7	Boron (Total Recoverable)	1000	ug/L	20.0		02/24/2022	1	
		Calcium (Total Recoverable)	422000	ug/L	100	T1/D	02/11/2022	1	
		Iron (Total Recoverable)	36.2	ug/L	10.0	EB	02/11/2022	1	
		Magnesium (Total Recoverable)	2320000	ug/L	10.0	T1/D	02/11/2022	1	
		Potassium (Total Recoverable)	32400	ug/L	300		02/11/2022	1	
		Sodium (Total Recoverable)	5900000	ug/L	200	T1/D/B1	02/11/2022	1	
	SM_4500_FC	Fluoride (Total)	0.58	mg/L	0.10			1	

LIMS #: 467363 Sample Date: 2/8/2022 1:10:28 PM Sample Point: FC_3B Sample Point Description: Fort Carson Well #3B Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.6	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	12.9	degrees C	0.000			1	
+	SM_2510_B	Conductivity	8270	umhos/cm	1			1	
	NA	Depth to Water	29.58	ft.	0.0000			1	
	SM_2540_C	Total Dissolved Solids	7560	mg/L	10			1	
	SM_4500_FC	Fluoride (Total)	0.61	mg/L	0.10			1	
	EPA_410_4	Chemical Oxygen Demand	240	mg/L	30			1	
	EPA_300_0	Chloride	222	mg/L	0.50	D	02/10/2022	1	
		Nitrate as Nitrogen	<0.10	mg/L	0.10	D	02/10/2022	1	
		Nitrite as Nitrogen	<0.10	mg/L	0.10	D	02/10/2022	1	
		Sulfate	4530	mg/L	0.50	D	02/11/2022	1	
	EPA_350_1	Ammonia (Total) as Nitrogen	1.8	mg/L	0.2		02/14/2022	1	
	EPA_353_2	Nitrite+Nitrate as Nitrogen	<0.10	mg/L	0.10		02/14/2022	1	
	EPA_200_8	Manganese (Total Recoverable)	325	ug/L	0.50	D	02/14/2022	1	
		Selenium (Total Recoverable)	4.8	ug/L	1.0	D	02/14/2022	1	
	EPA_200_7	Boron (Total Recoverable)	1300	ug/L	20.0		02/24/2022	1	
		Calcium (Total Recoverable)	218000	ug/L	100	T1/D	02/11/2022	1	
		Iron (Total Recoverable)	1990	ug/L	10.0		02/11/2022	1	
		Magnesium (Total Recoverable)	140000	ug/L	10.0	T1/D	02/11/2022	1	
		Potassium (Total Recoverable)	11800	ug/L	300		02/11/2022	1	
		Sodium (Total Recoverable)	2050000	ug/L	200	T1/D/B1	02/11/2022	1	
+	SM_2580_B	Oxidation-Reduction Potential	-222	mV	0			1	
	SM_2320_B	Alkalinity (Bicarbonate)	750	mg/L	5			1	
		Alkalinity (Carbonate)	<1	mg/L	1			1	
		Alkalinity (Total)	750	mg/L	5			1	

LIMS #: 467364 Sample Date: 2/8/2022 1:46:28 PM Sample Point: FC_3A Sample Point Description: Fort Carson Well #3A Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_2580_B	Oxidation-Reduction Potential	-28	mV	0			1	
+	SM_4500HB	рН	7.3	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	13.9	degrees C	0.000			1	
+	SM_2510_B	Conductivity	8150	umhos/cm	1			1	
	NA	Depth to Water	22.57	ft.	0.0000			1	
	SM_2540_C	Total Dissolved Solids	9160	mg/L	10			1	
	SM_2320_B	Alkalinity (Bicarbonate)	369	mg/L	5			1	
		Alkalinity (Carbonate)	<1	mg/L	1			1	
		Alkalinity (Total)	369	mg/L	5			1	
	SM_4500_FC	Fluoride (Total)	0.64	mg/L	0.10			1	
	EPA_410_4	Chemical Oxygen Demand	<30	mg/L	30	U		1	
	EPA_300_0	Chloride	130	mg/L	0.50	D	02/10/2022	1	
		Nitrate as Nitrogen	3.04	mg/L	0.10	н	02/10/2022	1	
		Nitrite as Nitrogen	0.12	mg/L	0.10	Н	02/10/2022	1	
		Sulfate	5840	mg/L	0.50	D	02/11/2022	1	
	EPA_350_1	Ammonia (Total) as Nitrogen	0.2	mg/L	0.2		02/14/2022	1	
	EPA_353_2	Nitrite+Nitrate as Nitrogen	3.2	mg/L	0.10		02/14/2022	1	
	EPA_200_8	Manganese (Total Recoverable)	939	ug/L	0.50	D	02/25/2022	1	
		Selenium (Total Recoverable)	38.5	ug/L	1.0	D	02/25/2022	1	
	EPA_200_7	Boron (Total Recoverable)	1110	ug/L	20.0		02/24/2022	1	
		Calcium (Total Recoverable)	405000	ug/L	100	D/T1	02/11/2022	1	
		Iron (Total Recoverable)	808	ug/L	10.0		02/11/2022	1	
		Magnesium (Total Recoverable)	536000	ug/L	10.0	T1/D	02/11/2022	1	
		Potassium (Total Recoverable)	2740	ug/L	300		02/11/2022	1	
		Sodium (Total Recoverable)	1450000	ug/L	200	T1/D/B1	02/11/2022	1	

LIMS #: 467365 Sample Date: 2/8/2022 2:50:28 PM Sample Point: SC_8 Sample Point Description: Sand Canyon Well #8 Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	6.8	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	12.8	degrees C	0.000			1	
+	SM_2510_B	Conductivity	11800	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	73	mV	0.000			1	
	NA	Depth to Water	8.62	ft.	0.0000			1	
	SM_2540_C	Total Dissolved Solids	12100	mg/L	10			1	
	SM_2320_B	Alkalinity (Bicarbonate)	762	mg/L	5			1	
		Alkalinity (Carbonate)	<1	mg/L	1			1	
		Alkalinity (Total)	762	mg/L	5			1	
	SM_4500_FC	Fluoride (Total)	0.68	mg/L	0.10			1	
	EPA_410_4	Chemical Oxygen Demand	234	mg/L	30			1	
	EPA_300_0	Chloride	1340	mg/L	0.50	D	02/10/2022	1	
		Nitrate as Nitrogen	777	mg/L	0.10	D/H	02/11/2022	1	
		Nitrite as Nitrogen	0.47	mg/L	0.10	D/H	02/10/2022	1	
		Sulfate	3260	mg/L	0.50		02/11/2022	1	
	EPA_350_1	Ammonia (Total) as Nitrogen	0.2	mg/L	0.2		02/14/2022	1	
	EPA_353_2	Nitrite+Nitrate as Nitrogen	1100	mg/L	0.10	D/T2	02/14/2022	1	
	EPA_200_8	Manganese (Total Recoverable)	780	ug/L	0.50	D	02/25/2022	1	
		Selenium (Total Recoverable)	63.3	ug/L	1.0	D	02/25/2022	1	
	EPA_200_7	Boron (Total Recoverable)	1190	ug/L	20.0		02/24/2022	1	
		Calcium (Total Recoverable)	588000	ug/L	100	D/T1	02/11/2022	1	
		Iron (Total Recoverable)	412	ug/L	10.0		02/11/2022	1	
		Magnesium (Total Recoverable)	883000	ug/L	10.0	T1/D	02/11/2022	1	
		Potassium (Total Recoverable)	6540	ug/L	300		02/11/2022	1	
		Sodium (Total Recoverable)	1790000	ug/L	200	T1/D/B1	02/11/2022	1	

LIMS #: 467366 Sample Date: 2/8/2022 3:36:28 PM Sample Point: SC_10 Sample Point Description: Sand Canyon Well #10 Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.2	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	14.7	degrees C	0.000			1	
+	SM_2510_B	Conductivity	15700	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	61	mV	0.000			1	
	NA	Depth to Water	15.02	ft.	0.0000			1	
	SM_2320_B	Alkalinity (Bicarbonate)	584	mg/L	5			1	
		Alkalinity (Carbonate)	<1	mg/L	1			1	
		Alkalinity (Total)	584	mg/L	5			1	
	EPA_350_1	Ammonia (Total) as Nitrogen	0.2	mg/L	0.2		02/14/2022	1	
	EPA_353_2	Nitrite+Nitrate as Nitrogen	240	mg/L	0.10	D/T2	02/14/2022	1	
	EPA_200_8	Manganese (Total Recoverable)	364	ug/L	0.50	D	02/25/2022	1	
		Selenium (Total Recoverable)	210	ug/L	1.0	D	02/25/2022	1	
	EPA_200_7	Boron (Total Recoverable)	1250	ug/L	20.0		02/24/2022	1	
		Calcium (Total Recoverable)	440000	ug/L	100	D/T1	02/11/2022	1	
		Iron (Total Recoverable)	2380	ug/L	10.0		02/11/2022	1	
		Magnesium (Total Recoverable)	875000	ug/L	10.0	T1/D	02/11/2022	1	
		Potassium (Total Recoverable)	10300	ug/L	300	D	02/11/2022	1	
		Sodium (Total Recoverable)	3750000	ug/L	200	T1/D/B1	02/11/2022	1	
	EPA_410_4	Chemical Oxygen Demand	130	mg/L	30			1	
	SM_2540_C	Total Dissolved Solids	17700	mg/L	10			1	
	EPA_300_0	Chloride	997	mg/L	0.50	D	02/10/2022	1	
		Nitrate as Nitrogen	188	mg/L	0.10	D/H	02/10/2022	1	
		Nitrite as Nitrogen	0.47	mg/L	0.10	D/H	02/10/2022	1	
		Sulfate	10300	mg/L	0.50	D	02/11/2022	1	
	SM_4500_FC	Fluoride (Total)	0.87	mg/L	0.10			1	

LIMS #: 467367 Sample Date: 2/8/2022 3:32:52 PM Sample Point: EQUIP_BLK Sample Point Description: Equipment Blank Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
	SM_2540_C	Total Dissolved Solids	<10	mg/L	10			1	
	SM_2320_B	Alkalinity (Bicarbonate)	<5	mg/L	5	P3		1	
		Alkalinity (Carbonate)	<1	mg/L	1	P3		1	
		Alkalinity (Total)	<5	mg/L	5	U/P3		1	
	SM_4500_FC	Fluoride (Total)	<0.10	mg/L	0.10			1	
	EPA_410_4	Chemical Oxygen Demand	<30	mg/L	30	U		1	
	EPA_300_0	Chloride	<0.50	mg/L	0.50		02/09/2022	1	
		Nitrate as Nitrogen	<0.10	mg/L	0.10		02/09/2022	1	
		Nitrite as Nitrogen	<0.10	mg/L	0.10		02/09/2022	1	
		Sulfate	<0.50	mg/L	0.50		02/09/2022	1	
	EPA_350_1	Ammonia (Total) as Nitrogen	<0.2	mg/L	0.2		02/14/2022	1	
	EPA_353_2	Nitrite+Nitrate as Nitrogen	0.21	mg/L	0.10		02/14/2022	1	
	EPA_200_8	Manganese (Total Recoverable)	<0.50	ug/L	0.50		02/14/2022	1	
		Selenium (Total Recoverable)	<1.0	ug/L	1.0		02/14/2022	1	
	EPA_200_7	Boron (Total Recoverable)	<20.0	ug/L	20.0		02/24/2022	1	
		Calcium (Total Recoverable)	<100	ug/L	100		02/11/2022	1	
		Iron (Total Recoverable)	18.5	ug/L	10.0		02/11/2022	1	
		Magnesium (Total Recoverable)	<10.0	ug/L	10.0		02/11/2022	1	
		Potassium (Total Recoverable)	<300	ug/L	300		02/24/2022	1	
		Sodium (Total Recoverable)	<200	ug/L	200	B1	02/11/2022	1	

LIMS #: 467368 Sample Date: 2/8/2022 12:00:52 AM Sample Point: FIELD_DUP Sample Point Description: Field Duplicate sample Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
	SM_2540_C	Total Dissolved Solids	52300	mg/L	10			1	
	SM_2320_B	Alkalinity (Bicarbonate)	1570	mg/L	5			1	
		Alkalinity (Carbonate)	<1	mg/L	1			1	
		Alkalinity (Total)	1570	mg/L	5			1	
	SM_4500_FC	Fluoride (Total)	3.33	mg/L	0.10			1	
	EPA_410_4	Chemical Oxygen Demand	132	mg/L	30			1	
	EPA_300_0	Chloride	764	mg/L	0.50	D	02/10/2022	1	
		Nitrate as Nitrogen	580	mg/L	0.10	D	02/10/2022	1	
		Nitrite as Nitrogen	<0.10	mg/L	0.10	D/P4	02/10/2022	1	
		Sulfate	32000	mg/L	0.50	D	02/25/2022	1	
	EPA_350_1	Ammonia (Total) as Nitrogen	3.4	mg/L	0.2		02/14/2022	1	
	EPA_353_2	Nitrite+Nitrate as Nitrogen	750	mg/L	0.10	D	02/14/2022	1	
	EPA_200_7	Boron (Total Recoverable)	1670	ug/L	20.0		02/24/2022	1	
		Calcium (Total Recoverable)	399000	ug/L	100	T1/D	02/11/2022	1	
		Iron (Total Recoverable)	278	ug/L	10.0		02/11/2022	1	
		Magnesium (Total Recoverable)	1430000	ug/L	10.0	T1/D	02/11/2022	1	
		Potassium (Total Recoverable)	74800	ug/L	300		02/11/2022	1	
		Sodium (Total Recoverable)	13900000	ug/L	200	T1/D/B1	02/11/2022	1	
	EPA_200_8	Manganese (Total Recoverable)	1040	ug/L	0.50	D	02/25/2022	1	
		Selenium (Total Recoverable)	393	ug/L	1.0	D	02/25/2022	1	

LIMS #: 467395 Sample Date: 2/9/2022 9:55:42 AM Sample Point: SC_7 Sample Point Description: Sand Canyon Well #7 Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor
+	SM_4500HB	рН	7.4	SU	2.0			1
+	SM_2550_B	Temperature Centigrade (Field)	12.4	degrees C	0.000			1
+	SM_2510_B	Conductivity	17100	umhos/cm	1			1
+	SM_2580_B	Oxidation-Reduction Potential	90	mV	0			1
	NA	Depth to Water	9.84	ft.	0.0000			1
	SM_2320_B	Alkalinity (Bicarbonate)	836	mg/L	5			1
		Alkalinity (Carbonate)	<1	mg/L	1			1
		Alkalinity (Total)	836	mg/L	5			1
	SM_4500_FC	Fluoride (Total)	0.71	mg/L	0.10			1
	EPA_410_4	Chemical Oxygen Demand	97	mg/L	30			1
	EPA_300_0	Chloride	531	mg/L	0.50	D	02/26/2022	1
		Nitrate as Nitrogen	194	mg/L	0.10	D/H	02/26/2022	1
		Nitrite as Nitrogen	<0.10	mg/L	0.10	D/H/P4	02/26/2022	1
		Sulfate	11400	mg/L	0.50	D	02/26/2022	1
	EPA_350_1	Ammonia (Total) as Nitrogen	<0.2	mg/L	0.2		02/14/2022	1
	EPA_353_2	Nitrite+Nitrate as Nitrogen	230	mg/L	0.10	D/T2	02/14/2022	1
	EPA_200_8	Manganese (Total Recoverable)	209	ug/L	0.50	D	02/15/2022	1
		Selenium (Total Recoverable)	162	ug/L	1.0	D	02/15/2022	1
	EPA_200_7	Boron (Total Recoverable)	1190	ug/L	20.0		02/23/2022	1
		Calcium (Total Recoverable)	383000	ug/L	100	D/T1	02/23/2022	1
		Iron (Total Recoverable)	234	ug/L	10.0		02/23/2022	1
		Magnesium (Total Recoverable)	1010000	ug/L	10.0	T1/D	02/23/2022	1
		Potassium (Total Recoverable)	12500	ug/L	300	D/T1	02/23/2022	1
	EPA_200_7	Sodium (Total Recoverable)	4040000	ug/L	200	T1/D	02/23/2022	1
	SM_2540_C	Total Dissolved Solids	19100	mg/L	10			1

LIMS #: 467396 Sample Date: 2/9/2022 10:58:42 AM Sample Point: SC_12 Sample Point Description: Sand Canyon Well #12 Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.5	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	14.3	degrees C	0.000			1	
+	SM_2510_B	Conductivity	13200	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	170	mV	0			1	
	NA	Depth to Water	11.83	ft.	0.0000			1	
	SM_2540_C	Total Dissolved Solids	13900	mg/L	10			1	
	SM_2320_B	Alkalinity (Bicarbonate)	388	mg/L	5			1	
		Alkalinity (Carbonate)	<1	mg/L	1			1	
		Alkalinity (Total)	388	mg/L	5			1	
	SM_4500_FC	Fluoride (Total)	1.38	mg/L	0.10			1	
	EPA_410_4	Chemical Oxygen Demand	62	mg/L	30			1	
	EPA_300_0	Chloride	298	mg/L	0.50	D/T2	02/11/2022	1	
		Nitrate as Nitrogen	7.13	mg/L	0.10	D/H/T2	02/11/2022	1	
		Nitrite as Nitrogen	<0.10	mg/L	0.10	D/H/T2	02/11/2022	1	
		Sulfate	8560	mg/L	0.50	D/T2	02/11/2022	1	
	EPA_350_1	Ammonia (Total) as Nitrogen	<0.2	mg/L	0.2		02/14/2022	1	
	EPA_353_2	Nitrite+Nitrate as Nitrogen	9.9	mg/L	0.10	T2	02/14/2022	1	
	EPA_200_8	Manganese (Total Recoverable)	97.7	ug/L	0.50	D	02/15/2022	1	
		Selenium (Total Recoverable)	13.8	ug/L	1.0	D	02/15/2022	1	
	EPA_200_7	Boron (Total Recoverable)	4480	ug/L	20.0		02/23/2022	1	
		Calcium (Total Recoverable)	381000	ug/L	100	T1/D	02/23/2022	1	
		Iron (Total Recoverable)	32.9	ug/L	10.0		02/23/2022	1	
		Magnesium (Total Recoverable)	751000	ug/L	10.0	T1/D	02/23/2022	1	
		Potassium (Total Recoverable)	3960	ug/L	300	D	02/23/2022	1	
	EPA_200_7	Sodium (Total Recoverable)	2710000	ug/L	200	T1/D	02/23/2022	1	

LIMS #: 467397 Sample Date: 2/9/2022 11:54:42 AM Sample Point: SC_13 Sample Point Description: Sand Canyon Well #13 Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.5	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	12.6	degrees C	0.000			1	
+	SM_2510_B	Conductivity	10200	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	51	mV	0			1	
	NA	Depth to Water	11.97	ft.	0.0000			1	
	SM_2540_C	Total Dissolved Solids	11000	mg/L	10			1	
	SM_2320_B	Alkalinity (Bicarbonate)	405	mg/L	5			1	
		Alkalinity (Carbonate)	<1	mg/L	1			1	
		Alkalinity (Total)	405	mg/L	5			1	
	SM_4500_FC	Fluoride (Total)	1.16	mg/L	0.10			1	
	EPA_410_4	Chemical Oxygen Demand	39	mg/L	30			1	
	EPA_300_0	Chloride	82.0	mg/L	0.50	D/T2	02/11/2022	1	
		Nitrate as Nitrogen	4.94	mg/L	0.10	D/H/T2	02/11/2022	1	
		Nitrite as Nitrogen	<0.10	mg/L	0.10	D/H/T2	02/11/2022	1	
		Sulfate	3870	mg/L	0.50	D/T2	02/12/2022	1	
	EPA_350_1	Ammonia (Total) as Nitrogen	<0.2	mg/L	0.2		02/14/2022	1	
	EPA_353_2	Nitrite+Nitrate as Nitrogen	2.8	mg/L	0.10	T2	02/14/2022	1	
	EPA_200_8	Manganese (Total Recoverable)	24.0	ug/L	0.50	D	02/15/2022	1	
		Selenium (Total Recoverable)	25.1	ug/L	1.0	D	02/15/2022	1	
	EPA_200_7	Boron (Total Recoverable)	1600	ug/L	20.0		02/23/2022	1	
		Calcium (Total Recoverable)	379000	ug/L	100	T1/D	02/23/2022	1	
		Iron (Total Recoverable)	<10.0	ug/L	10.0		02/23/2022	1	
		Magnesium (Total Recoverable)	733000	ug/L	10.0	T1/D	02/23/2022	1	
		Potassium (Total Recoverable)	2950	ug/L	300	D	02/23/2022	1	
		Sodium (Total Recoverable)	1940000	ug/L	200	T1/D	02/23/2022	1	

LIMS #: 467398 Sample Date: 2/9/2022 12:28:42 PM Sample Point: SC_14 Sample Point Description: Sand Canyon Well #14 Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor
+	SM_4500HB	рН	7.5	SU	2.0			1
+	SM_2550_B	Temperature Centigrade (Field)	11.8	degrees C	0.000			1
+	SM_2510_B	Conductivity	10100	umhos/cm	1			1
+	SM_2580_B	Oxidation-Reduction Potential	55	mV	0			1
	NA	Depth to Water	12.19	ft.	0.0000			1
	SM_2540_C	Total Dissolved Solids	11400	mg/L	10			1
	SM_2320_B	Alkalinity (Bicarbonate)	407	mg/L	5			1
		Alkalinity (Carbonate)	<1	mg/L	1			1
		Alkalinity (Total)	407	mg/L	5			1
	SM_4500_FC	Fluoride (Total)	1.10	mg/L	0.10			1
	EPA_300_0	Chloride	77.8	mg/L	0.50	D/T2	02/11/2022	1
		Nitrate as Nitrogen	1.63	mg/L	0.10	D/H/T2	02/11/2022	1
		Nitrite as Nitrogen	<0.10	mg/L	0.10	D/H/T2	02/11/2022	1
		Sulfate	3960	mg/L	0.50	D/T2	02/12/2022	1
	EPA_350_1	Ammonia (Total) as Nitrogen	<0.2	mg/L	0.2		02/14/2022	1
	EPA_353_2	Nitrite+Nitrate as Nitrogen	1.6	mg/L	0.10	T2	02/14/2022	1
	EPA_200_8	Manganese (Total Recoverable)	304	ug/L	0.50	D	02/15/2022	1
		Selenium (Total Recoverable)	5.2	ug/L	1.0	D	02/15/2022	1
	EPA_200_7	Boron (Total Recoverable)	1600	ug/L	20.0		02/23/2022	1
		Calcium (Total Recoverable)	382000	ug/L	100	T1/D	02/23/2022	1
		Iron (Total Recoverable)	<10.0	ug/L	10.0		02/23/2022	1
		Magnesium (Total Recoverable)	742000	ug/L	10.0	T1/D	02/23/2022	1
		Potassium (Total Recoverable)	3500	ug/L	300	D	02/23/2022	1
		Sodium (Total Recoverable)	1970000	ug/L	200	T1/D	02/23/2022	1
	EPA_410_4	Chemical Oxygen Demand	34	mg/L	30			1

LIMS #: 467399 Sample Date: 2/9/2022 1:10:42 PM Sample Point: SC_2 Sample Point Description: Sand Canyon Well #2 Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.5	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	11.6	degrees C	0.000			1	
+	SM_2510_B	Conductivity	10200	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	48	mV	0			1	
	NA	Depth to Water	13.71	ft.	0.0000			1	
	SM_2540_C	Total Dissolved Solids	11600	mg/L	10			1	
	SM_2320_B	Alkalinity (Bicarbonate)	421	mg/L	5			1	
		Alkalinity (Carbonate)	<1	mg/L	1			1	
		Alkalinity (Total)	421	mg/L	5			1	
	SM_4500_FC	Fluoride (Total)	1.09	mg/L	0.10			1	
	EPA_410_4	Chemical Oxygen Demand	39	mg/L	30			1	
	EPA_300_0	Chloride	160	mg/L	0.50	D/T2	02/11/2022	1	
		Nitrate as Nitrogen	1.81	mg/L	0.10	D/T2	02/11/2022	1	
		Nitrite as Nitrogen	<0.10	mg/L	0.10	D/T2	02/11/2022	1	
		Sulfate	3770	mg/L	0.50	D/T2	02/12/2022	1	
	EPA_350_1	Ammonia (Total) as Nitrogen	<0.2	mg/L	0.2		02/14/2022	1	
	EPA_353_2	Nitrite+Nitrate as Nitrogen	2.5	mg/L	0.10	T2	02/14/2022	1	
	EPA_200_8	Manganese (Total Recoverable)	15.3	ug/L	0.50	D	02/15/2022	1	
		Selenium (Total Recoverable)	12.9	ug/L	1.0	D	02/15/2022	1	
	EPA_200_7	Boron (Total Recoverable)	1680	ug/L	20.0		02/23/2022	1	
		Calcium (Total Recoverable)	375000	ug/L	100	T1/D	02/23/2022	1	
		Iron (Total Recoverable)	75.9	ug/L	10.0		02/23/2022	1	
		Magnesium (Total Recoverable)	741000	ug/L	10.0	T1/D	02/23/2022	1	
		Potassium (Total Recoverable)	2850	ug/L	300	D	02/23/2022	1	
		Sodium (Total Recoverable)	2020000	ug/L	200	T1/D	02/23/2022	1	

LIMS #: 467400 Sample Date: 2/9/2022 2:10:42 PM Sample Point: SC_3 Sample Point Description: Sand Canyon Well #3 Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.9	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	12.5	degrees C	0.000			1	
+	SM_2510_B	Conductivity	18500	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	56	mV	0			1	
	NA	Depth to Water	13.87	ft.	0.0000			1	
	SM_2540_C	Total Dissolved Solids	21800	mg/L	10			1	
	SM_2320_B	Alkalinity (Bicarbonate)	292	mg/L	5			1	
		Alkalinity (Carbonate)	<1	mg/L	1			1	
		Alkalinity (Total)	292	mg/L	5			1	
	SM_4500_FC	Fluoride (Total)	1.39	mg/L	0.10			1	
	EPA_410_4	Chemical Oxygen Demand	108	mg/L	30			1	
	EPA_300_0	Chloride	352	mg/L	0.50	D/T2	02/12/2022	1	
		Nitrate as Nitrogen	3.97	mg/L	0.10	D/H/T2	02/11/2022	1	
		Nitrite as Nitrogen	<0.10	mg/L	0.10	D/H/T2	02/11/2022	1	
		Sulfate	7270	mg/L	0.50	D/T2	02/12/2022	1	
	EPA_350_1	Ammonia (Total) as Nitrogen	<0.2	mg/L	0.2		02/14/2022	1	
	EPA_353_2	Nitrite+Nitrate as Nitrogen	5.5	mg/L	0.10	T2	02/14/2022	1	
	EPA_200_8	Manganese (Total Recoverable)	42.6	ug/L	0.50	D	02/15/2022	1	
		Selenium (Total Recoverable)	21.7	ug/L	1.0	D	02/15/2022	1	
	EPA_200_7	Boron (Total Recoverable)	1130	ug/L	20.0		02/23/2022	1	
		Calcium (Total Recoverable)	377000	ug/L	100	T1/D	02/23/2022	1	
		Iron (Total Recoverable)	164	ug/L	10.0		02/23/2022	1	
		Magnesium (Total Recoverable)	1250000	ug/L	10.0	T1/D	02/23/2022	1	
		Potassium (Total Recoverable)	6750	ug/L	300	D	02/23/2022	1	
	EPA_200_7	Sodium (Total Recoverable)	4390000	ug/L	200	T1/D	02/23/2022	1	

LIMS #: 467401 Sample Date: 2/9/2022 2:52:42 PM Sample Point: SC_11 Sample Point Description: Sand Canyon Well #11 Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.5	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	14.2	degrees C	0.000			1	
+	SM_2510_B	Conductivity	14800	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	49	mV	0			1	
	NA	Depth to Water	12.53	ft.	0.0000			1	
	SM_2540_C	Total Dissolved Solids	14600	mg/L	10			1	
	SM_2320_B	Alkalinity (Bicarbonate)	385	mg/L	5			1	
		Alkalinity (Carbonate)	<1	mg/L	1			1	
		Alkalinity (Total)	385	mg/L	5			1	
	SM_4500_FC	Fluoride (Total)	0.86	mg/L	0.10			1	
	EPA_410_4	Chemical Oxygen Demand	153	mg/L	30			1	
	EPA_300_0	Chloride	554	mg/L	0.50	D/T2	02/11/2022	1	
		Nitrate as Nitrogen	73.5	mg/L	0.10	D/T2	02/11/2022	1	
		Nitrite as Nitrogen	<0.10	mg/L	0.10	D/T2	02/11/2022	1	
		Sulfate	4310	mg/L	0.50	D/T2	02/12/2022	1	
	EPA_350_1	Ammonia (Total) as Nitrogen	<0.2	mg/L	0.2		02/14/2022	1	
	EPA_353_2	Nitrite+Nitrate as Nitrogen	150	mg/L	0.10	D	02/15/2022	1	
	EPA_200_8	Manganese (Total Recoverable)	55.4	ug/L	0.50	D	02/15/2022	1	
		Selenium (Total Recoverable)	213	ug/L	1.0	D	02/15/2022	1	
	EPA_200_7	Boron (Total Recoverable)	2530	ug/L	20.0		02/23/2022	1	
		Calcium (Total Recoverable)	437000	ug/L	100	T1/D	02/23/2022	1	
		Iron (Total Recoverable)	137	ug/L	10.0		02/23/2022	1	
		Magnesium (Total Recoverable)	702000	ug/L	10.0	T1/D	02/23/2022	1	
		Potassium (Total Recoverable)	12200	ug/L	300	D	02/23/2022	1	
	EPA_200_7	Sodium (Total Recoverable)	3040000	ug/L	200	T1/D	02/23/2022	1	

LIMS #: 467402 Sample Date: 2/9/2022 10:30:42 AM Sample Point: FC_1 Sample Point Description: Fort Carson Well #1 Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.2	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	12.8	degrees C	0.000			1	
+	SM_2510_B	Conductivity	21100	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	194	mV	0			1	
	NA	Depth to Water	18.20	ft.	0.0000			1	
	SM_2540_C	Total Dissolved Solids	21600	mg/L	10			1	
	SM_2320_B	Alkalinity (Bicarbonate)	926	mg/L	5			1	
		Alkalinity (Carbonate)	<1	mg/L	1			1	
		Alkalinity (Total)	926	mg/L	5			1	
	SM_4500_FC	Fluoride (Total)	0.19	mg/L	0.10			1	
	EPA_300_0	Chloride	389	mg/L	0.50	D/T2	02/11/2022	1	
		Nitrate as Nitrogen	11.2	mg/L	0.10	D/H/T2	02/11/2022	1	
		Nitrite as Nitrogen	<0.10	mg/L	0.10	D/H/T2	02/11/2022	1	
		Sulfate	7350	mg/L	0.50	D/T2	02/11/2022	1	
	EPA_350_1	Ammonia (Total) as Nitrogen	<0.2	mg/L	0.2		02/14/2022	1	
	EPA_353_2	Nitrite+Nitrate as Nitrogen	18	mg/L	0.10	D	02/15/2022	1	
	EPA_200_8	Manganese (Total Recoverable)	150	ug/L	0.50	D	02/28/2022	1	
		Selenium (Total Recoverable)	9.8	ug/L	1.0	D	02/28/2022	1	
	EPA_200_7	Boron (Total Recoverable)	1070	ug/L	20.0		02/23/2022	1	
		Calcium (Total Recoverable)	383000	ug/L	100	T1/D	02/23/2022	1	
		Iron (Total Recoverable)	<10.0	ug/L	10.0		02/23/2022	1	
		Magnesium (Total Recoverable)	692000	ug/L	10.0	T1/D	02/23/2022	1	
		Potassium (Total Recoverable)	31200	ug/L	300	D	02/23/2022	1	
	EPA_200_7	Sodium (Total Recoverable)	5330000	ug/L	200	T1/D	02/23/2022	1	
	EPA_410_4	Chemical Oxygen Demand	118	mg/L	30			1	

LIMS #: 467403 Sample Date: 2/9/2022 11:22:42 AM Sample Point: FC_2 Sample Point Description: Fort Carson Well #2 Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.3	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	12.8	degrees C	0.000			1	
+	SM_2510_B	Conductivity	9450	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	156	mV	0			1	
	NA	Depth to Water	14.69	ft.	0.0000			1	
	SM_2540_C	Total Dissolved Solids	9780	mg/L	10			1	
	SM_2320_B	Alkalinity (Bicarbonate)	350	mg/L	5			1	
		Alkalinity (Carbonate)	<1	mg/L	1			1	
		Alkalinity (Total)	350	mg/L	5			1	
	SM_4500_FC	Fluoride (Total)	0.73	mg/L	0.10			1	
	EPA_410_4	Chemical Oxygen Demand	33	mg/L	30			1	
	EPA_300_0	Chloride	58.6	mg/L	0.50	D/T2	02/11/2022	1	
		Nitrate as Nitrogen	4.90	mg/L	0.10	D/H/T2	02/11/2022	1	
		Nitrite as Nitrogen	<0.10	mg/L	0.10	D/H/T2	02/11/2022	1	
		Sulfate	3400	mg/L	0.50	D/T2	02/12/2022	1	
	EPA_350_1	Ammonia (Total) as Nitrogen	<0.2	mg/L	0.2		02/14/2022	1	
	EPA_353_2	Nitrite+Nitrate as Nitrogen	4.5	mg/L	0.10	T2	02/14/2022	1	
	EPA_200_8	Manganese (Total Recoverable)	42.6	ug/L	0.50	D	02/28/2022	1	
		Selenium (Total Recoverable)	34.4	ug/L	1.0	D	02/28/2022	1	
	EPA_200_7	Boron (Total Recoverable)	1030	ug/L	20.0		02/23/2022	1	
		Calcium (Total Recoverable)	395000	ug/L	100	T1/D	02/23/2022	1	
		Iron (Total Recoverable)	101	ug/L	10.0		02/23/2022	1	
		Magnesium (Total Recoverable)	613000	ug/L	10.0	T1/D	02/23/2022	1	
		Potassium (Total Recoverable)	2580	ug/L	300	D	02/23/2022	1	
		Sodium (Total Recoverable)	1640000	ug/L	200	T1/D	02/23/2022	1	

LIMS #: 467404 Sample Date: 2/9/2022 1:59:42 PM Sample Point: WW_3A Sample Point Description: Clear Spring Ranch Wastewater Well #3A Collection Comments: Sample Type: GRAB

Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
+	SM_4500HB	рН	7.1	SU	2.0			1	
+	SM_2550_B	Temperature Centigrade (Field)	13.8	degrees C	0.000			1	
+	SM_2510_B	Conductivity	16300	umhos/cm	1			1	
+	SM_2580_B	Oxidation-Reduction Potential	188	mV	0			1	
	NA	Depth to Water	22.27	ft.	0.0000			1	
	SM_2540_C	Total Dissolved Solids	16600	mg/L	10			1	
	SM_2320_B	Alkalinity (Bicarbonate)	914	mg/L	5			1	
		Alkalinity (Carbonate)	<1	mg/L	1			1	
		Alkalinity (Total)	914	mg/L	5			1	
	SM_4500_FC	Fluoride (Total)	0.16	mg/L	0.10			1	
	EPA_410_4	Chemical Oxygen Demand	97	mg/L	30			1	
	EPA_300_0	Chloride	163	mg/L	0.50	D/T2	02/11/2022	1	
		Nitrate as Nitrogen	38.4	mg/L	0.10	D/H/T2	02/11/2022	1	
		Nitrite as Nitrogen	0.44	mg/L	0.10	D/H/T2	02/11/2022	1	
		Sulfate	5690	mg/L	0.50	D/T2	02/12/2022	1	
	EPA_350_1	Ammonia (Total) as Nitrogen	<0.2	mg/L	0.2		02/14/2022	1	
	EPA_353_2	Nitrite+Nitrate as Nitrogen	82	mg/L	0.10	D	02/15/2022	1	
	EPA_200_8	Manganese (Total Recoverable)	392	ug/L	0.50	D	02/28/2022	1	
		Selenium (Total Recoverable)	4.1	ug/L	1.0	D	02/28/2022	1	
	EPA_200_7	Boron (Total Recoverable)	1410	ug/L	20.0		02/23/2022	1	
		Calcium (Total Recoverable)	391000	ug/L	100	T1/D	02/23/2022	1	
		Iron (Total Recoverable)	<10.0	ug/L	10.0		02/23/2022	1	
		Magnesium (Total Recoverable)	796000	ug/L	10.0	T1/D	02/23/2022	1	
		Potassium (Total Recoverable)	32700	ug/L	300	D	02/23/2022	1	
	EPA_200_7	Sodium (Total Recoverable)	3560000	ug/L	200	T1/D	02/23/2022	1	

LIMS #: 467405 Sample Date: 2/9/2022 3:48:42 PM Sample Point: SC_9 Sample Point Description: Sand Canyon Well #9 Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor
+	SM_4500HB	рН	7.2	SU	2.0			1
+	SM_2550_B	Temperature Centigrade (Field)	14.2	degrees C	0.000			1
+	SM_2510_B	Conductivity	20100	umhos/cm	1			1
+	SM_2580_B	Oxidation-Reduction Potential	180	mV	0			1
	NA	Depth to Water	19.52	ft.	0.0000			1
	SM_2320_B	Alkalinity (Bicarbonate)	724	mg/L	5			1
		Alkalinity (Carbonate)	<1	mg/L	1			1
		Alkalinity (Total)	724	mg/L	5			1
	EPA_300_0	Chloride	1410	mg/L	0.50	D	02/26/2022	1
		Nitrate as Nitrogen	338	mg/L	0.10	D/H	02/26/2022	1
		Nitrite as Nitrogen	3.76	mg/L	0.10	D/H/P4	02/26/2022	1
		Sulfate	11400	mg/L	0.50	D	02/26/2022	1
	EPA_350_1	Ammonia (Total) as Nitrogen	<0.2	mg/L	0.2		02/14/2022	1
	EPA_353_2	Nitrite+Nitrate as Nitrogen	430	mg/L	0.10	D/T2	02/14/2022	1
	EPA_200_8	Manganese (Total Recoverable)	55.5	ug/L	0.50	D	02/28/2022	1
		Selenium (Total Recoverable)	205	ug/L	1.0	D	02/28/2022	1
	EPA_200_7	Boron (Total Recoverable)	1350	ug/L	20.0		02/23/2022	1
		Calcium (Total Recoverable)	434000	ug/L	100	T1/D	02/23/2022	1
		Iron (Total Recoverable)	10600	ug/L	10.0		02/23/2022	1
		Magnesium (Total Recoverable)	1240000	ug/L	10.0	T1/D	02/23/2022	1
		Potassium (Total Recoverable)	19100	ug/L	300	D	02/23/2022	1
	EPA_200_7	Sodium (Total Recoverable)	4170000	ug/L	200	T1/D	02/23/2022	1
	EPA_410_4	Chemical Oxygen Demand	172	mg/L	30			1
	SM_2540_C	Total Dissolved Solids	21600	mg/L	10			1
	SM_4500_FC	Fluoride (Total)	1.03	mg/L	0.10			1

LIMS #: 467406 Sample Date: 2/9/2022 12:00:35 AM Sample Point: FIELD_DUP Sample Point Description: Field Duplicate sample Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
	SM_2540_C	Total Dissolved Solids	14700	mg/L	10			1	
	SM_2320_B	Alkalinity (Bicarbonate)	386	mg/L	5			1	
		Alkalinity (Carbonate)	<1	mg/L	1			1	
		Alkalinity (Total)	386	mg/L	5			1	
	SM_4500_FC	Fluoride (Total)	0.85	mg/L	0.10			1	
	EPA_410_4	Chemical Oxygen Demand	104	mg/L	30			1	
	EPA_300_0	Chloride	557	mg/L	0.50	D/T2	02/11/2022	1	
		Nitrate as Nitrogen	74.5	mg/L	0.10	D/T2	02/11/2022	1	
		Nitrite as Nitrogen	<0.10	mg/L	0.10	D/T2	02/11/2022	1	
		Sulfate	4420	mg/L	0.50	D/T2	02/12/2022	1	
	EPA_350_1	Ammonia (Total) as Nitrogen	<0.2	mg/L	0.2		02/14/2022	1	
	EPA_353_2	Nitrite+Nitrate as Nitrogen	150	mg/L	0.10	D	02/15/2022	1	
	EPA_200_8	Manganese (Total Recoverable)	58.8	ug/L	0.50	D	02/28/2022	1	
		Selenium (Total Recoverable)	201	ug/L	1.0	D	02/28/2022	1	
	EPA_200_7	Boron (Total Recoverable)	2580	ug/L	20.0		02/23/2022	1	
		Calcium (Total Recoverable)	444000	ug/L	100	T1/D	02/23/2022	1	
		Iron (Total Recoverable)	142	ug/L	10.0		02/23/2022	1	
		Magnesium (Total Recoverable)	717000	ug/L	10.0	T1/D	02/23/2022	1	
		Potassium (Total Recoverable)	12500	ug/L	300	D	02/23/2022	1	
	EPA_200_7	Sodium (Total Recoverable)	3100000	ug/L	200	T1/D	03/23/2022	1	

LIMS #: 467407 Sample Date: 2/9/2022 4:03:35 PM Sample Point: EQUIP_BLK Sample Point Description: Equipment Blank Collection Comments: Sample Type: GRAB Sampler Initials: TERRACON

Flag	Method	Analyte	Result	Units	RL	Data Qualifiers	Analyzed On	Dilution Factor	
	SM_2540_C	Total Dissolved Solids	<10	mg/L	10			1	
	SM_2320_B	Alkalinity (Bicarbonate)	<5	mg/L	5	P3		1	
		Alkalinity (Carbonate)	<1	mg/L	1	P3		1	
		Alkalinity (Total)	<5	mg/L	5	J/P3		1	
	SM_4500_FC	Fluoride (Total)	<0.10	mg/L	0.10			1	
	EPA_410_4	Chemical Oxygen Demand	<30	mg/L	30	U		1	
	EPA_300_0	Chloride	<0.50	mg/L	0.50	T2	02/11/2022	1	
		Nitrate as Nitrogen	<0.10	mg/L	0.10	T2	02/11/2022	1	
		Nitrite as Nitrogen	<0.10	mg/L	0.10	T2	02/11/2022	1	
		Sulfate	<0.50	mg/L	0.50	T2	02/11/2022	1	
	EPA_350_1	Ammonia (Total) as Nitrogen	<0.2	mg/L	0.2		02/14/2022	1	
	EPA_353_2	Nitrite+Nitrate as Nitrogen	<0.10	mg/L	0.10		02/14/2022	1	
	EPA_200_8	Manganese (Total Recoverable)	<0.50	ug/L	0.50		02/15/2022	1	
		Selenium (Total Recoverable)	<1.0	ug/L	1.0		02/15/2022	1	
	EPA_200_7	Boron (Total Recoverable)	<20.0	ug/L	20.0			1	
		Calcium (Total Recoverable)	<100	ug/L	100			1	
		Iron (Total Recoverable)	<10.0	ug/L	10.0			1	
		Magnesium (Total Recoverable)	<10.0	ug/L	10.0			1	
		Potassium (Total Recoverable)	<300	ug/L	300			1	
		Sodium (Total Recoverable)	<200	ug/L	200			1	

Flags

- * Analysis performed by an external contract laboratory.
- + Analysis performed in the field.

Data Qualifiers

See below for qualifier descriptions.

Glossary

DQ - Data Qualifer RL – Reporting Limit MDL – Method Detection Limit Dil Fac – Dilution Factor

Case Narrative

B1 - Detection in the blank but the analyte concentration in the sample is 10x greater.

D - Value reported is multiplied by a dilution factor. The reporting limit is not.

EB - The equipment blank analyte concentration is above the RL for the associated samples.

H - Method required holding time for analyte exceeded.

J - Analysis confirms the presence of the analyte at a concentration which is less than the established RL, but greater than the MDL. The associated concentration value reported is approximate.

P3 - Concentration of analyte below RL. Duplicate RPD not used for data validation.

P4 - The precision for the sample duplicate exceeds the laboratory or method control limit.

T1 - The analyte concentration is disproportionate to the spike level and is outside the established range.

T2 - MS recovery not within the method acceptance limits due to sample dilution.

U - Data result less than the method detection limit.

CCR Landfill Alternative Source Demonstration

Sample Date:

2-8-22

lation Reduction Potential (mV), 2880 ductivity, Field (u.S.cm) SM 2510 B TDS (ES40 C), Altalinity, Candrage Blearborate (S40 C), Altalinity, Candrage and 4500 F C), and COD (EPA 410, 4) (SM Manganas & Selenium (EPA 200.8) and Boron, Calcium, Iron, Magnesium, Polassium and Sodium (EPA 200.8) and Chloride and Sulfate (EPA 300.0) Animonia (EPA 360.1) Alitrate (EPA 353.2) 1) and Nitrite and QC Report Needed Nperature, Field ('C) SM 2550 B Check which sample should have apth to Water (feet) XH, Field (su) SM 4500 H B LOCATION # of LIMS # Sample Sample Bottles Time FC-2A 3 137.7 1025 foss 7.47 11.8 10,228 15.20 467358 х х х F(-1A 3 407351 1145 Foss 7.22 13.0 22,789 163.9 17.58 х х х WW-JA Ø Fors х х х well dry. WW-5A 3 467360 1340 Foss 7.22 13.0 162,8 23.76 8,219 х х х WW-6A 3 1437 Foss 7.22 38,627 206.8 12.56 13.4 х х 4107.361 х 3 Equip Blank FOSS 1532 u107307 Х х х 3 Duplicate 4107308 0000 Foss х х х 3 CC-1 DSM 6.74 1450 24,500 178 1107302 11:24 х х х 17.60 3 FC-3B 1310 DJM 7.60 12.86 8,270-222 29.58 4107363 х х х FC-3A 3 7.28 13.86 8,150 1346 DJM 467364 -28 22.57 х х х 3 56-3 1450 DJM 4107305 6.77 12.79 11.80 73 х х х 8.62 3 56-10 1536 7.25 14.72 15,700 61 DJM 4107306 15.02 х х х FIELD_DUP х х EQUIP_BLK 33 1 - 1000 mL | 1 - 1000 mL 1 - 1000 ml Total # of Bottles Check if atrium lock-box was used plastic plastic plastic (new) 2/8/22 0 1699WMA dditional Comments / Sample Mikalian tions/ Actions Relinquished by Workflow: CCR_LANDFILL_ASD roject ID: CCR_RND_1 2-8-2200 1055 Received by Samples transported on ice.

Relinguished by

Received by

Colorado Springs Utilities Laboratory Services Grab Samples

CCR Landfill Alternative Source Demonstration

Sample Date:

7-9-22

Sample Date:		- 1 - 66	•	_										
QC Report Needed				-		Temperature, Field (C), SM 2550 B	Conductivity, Field (uSicm) SM 2310 B	Oxtdetion Reduction Potential (mV), 2580	r (feet)	Check which sample should h. MS/MSD performas should h.	TDS (2340 C), Alkalinity, Carbonale and Bicarbonate (SM 2320 B), Carbonale and 4500 F C), and COD, B), Flum-	Chloride and Sulfale (EPA 410.4) Ammonia (EPA 350.1) Mitrale (EPA 350.1) and Am.0),	Manganes & Selentum (EPA, 2008) Boron, Calcium (EPA, 2008) and Potassium and Sout, Iron, Magneeu, 10	mm (EPA 2007)
LOCATION	# of	LIMS #	Sample	Sampler	PH, Field (su) SM 4500 H B	Temperature,	Conductivity,	Oxidation Reg	Depth to Water (feet)	Check which s MS/MSD perfe	TDS (2540 C), Bicarbonate (5 4500 F C), an	Chloride and S Ammonia (Ep, Nitrate (EP, 3	Manganes & S Boron, Calciun Potassium ano	Comments
117	Bottles		Time					Please or	terk boxes that ap	ply.				
SC-7	3	467395	0955	Foss	7.35	12.4	17,124	90.2	9.84		×	×	×	
SC-12	3	4167396	1058	Foss	7.51	14.3	13,177	169.7	11.83		x	x	x	
56-13	3	467397	1154	toss	7.51	12.6	10,173	51.0	11.97		x	x	x	
SC-14	3	467398	1228	Foss	7.51	11.8	10,055	54.6	12.19		x	×	x	
56-2	3	467344	1310	Foss	7.52	11.6	10,183	48.3	13.71		x	x	x	
56-3	3	467400	1410	Foss	7.93	12.5	18,475				x	x	×	
SC-11	3	467401	1452	Fors	7.50	14.2	14,832	49.2	12.53		x	×	x	
FC-1	3	467402	1030	DJM	7.16	12.84	21,120	194	18.20		x	x	×	
FC-2	3	467403	11:22	DJr	7,34	12.79	9,459	156	14.69		x	x	×	
WW-3A	3	467404	1359	DSM	7.09	13.76	16,300	188	ZZZ	7	x	x	x	
56-9	3	467405	15:48	Din	7.24	14.15	20/0		19.52		x	x	x	Re-Tubed
						. ,	<i>J</i> , <i>I</i> ,				x	x	x	DIM
FIELD_DUP	3	467406	0000	fors							x	x	x	- Jor-
EQUIP_BLK	3	467407	1603	Foss							×	×	x	
Total # of Bottles	39		Check if atrium loci	k-box was used				251			1 - 1000 mL plastic	1 - 1000 mL plastic	1 - 1000 mL plastic (new)	
Relinquished by	Signature		M.Kel	κn.		ł	lam	Date/Time	19/22		@		- 1993	Additional Comments / Sample Rejections/ Actions Workflow: CCR_LANDFILL_ASD Project ID: CCR_RND_1
Received by	Un	i ans	the			2/	9/22				@165	7		Samples transported on ice.
Relinquished by			ر								@			
Received by											@			······································

Colorado Springs Utilities Laboratory Services Grab Samples

Laboratory Services Section Sample/Data Evaluation Form

PART 1: Initiator (person who first noticed incident):

Please complete one form per project.

Initiated by:

Date:

Issue (describe in detail):

Action Taken, if any:

Blank Sample Detections Sample Name for Blank Detection:

LIMS #:

Parameter	Blank value (units)	Reporting Limit (units)	Associated Sample Name	Associated Sample LIMS #	Sample Value (units)

	Sample LIMS #	Sample Point	Sample Date	Analysis Affected
ç				
ectio				
LIMS Section				
5				

Laboratory Services Section Sample/Data Evaluation Form

Analysis Details							
Parameters	Method #	Compliance					
		Yes	No	Both			
		Yes	No	Both			
		Yes	No	Both			
		Yes	No	Both			
		Yes	No	Both			
		Yes	No	Both			
		Yes	No	Both			
		Yes	No	Both			
		Yes	No	Both			
		Yes	No	Both			

Part 2: Customer Contact Details (Completed by Project Coordination):

Individual(s) contacted: Generally, the project owner(s)

Date:

Part 3: Approval (Section to be completed by LSS Lead):

Final Actions Taken (Reject Samples/Data, Accept Samples/Data, Qualify Samples/Data, Other)

Signature/Print last name:

Lesley Susic

Date:

F01-02910 (03/2022)

It's how we're all connected

Laboratory Services Section QC Report

CCR Landfill Alternative Source Demonstration February 2022

Quality Assurance Approval: Lesley Susic

Date: 3/08/2022

QC Narrative

This report is for sample numbers 467358 – 467368 and 467395 - 467407.

Total Dissolved Solids by Standard Methods 2540 C

There are no anomalies to report for this analysis.

Fluoride by Standard Methods 4500 F C

There are no anomalies to report for this analysis.

Chemical Oxygen Demand by EPA 410.4

No anomalies to report.

Alkalinity by Standard Methods 2320 B

For samples 467367 and 467407, the sample concentration was below the RL. Duplicate RPD not used for data validation.

Nitrite+Nitrate by EPA 353.2

The MS recovery was not within the method acceptance limits due to sample dilution. The associated samples were qualified.

Total Ammonia by EPA 350.1

No anomalies to report.

Anions by EPA Method 300.0

The MS recovery for chloride, sulfate, nitrite, and nitrate was not within the method acceptance limits due to sample dilution. The associated samples were qualified

The precision for the sample duplicate exceeded the laboratory or method control limit. The associated samples were qualified.

EPA 200.7

The analyte concentration in the samples is disproportionate to the spike level for calcium, magnesium and sodium.

The laboratory reagent blank for sodium is above the LRB limit for samples 467358-467368. The LRB value is less than 10% of the concentration of all associated samples, except the equipment blank. The samples are B1 qualified.

EPA 200.8

There are no anomalies to report for this analysis.

Method: Total Dissolved Solids by Standard Methods 2540 C Batch Analysis date: 2/10/22 Sampled date: 2/8/22 for samples 467358 - 467369

Matrix OC	performed on	samnlas	467366	and 467358
	penonneu on	Samples	407300	anu 407 556

QC Type	Analyte	Recovery (%)	Acceptable Range (%)	RPD (%)	RPD Limit (%)
QCS	Total Dissolved Solids	98	85 - 110		
Duplicate	Total Dissolved Solids (467366)			1	<10
Duplicate	Total Dissolved Solids (467358)			2	<10

Method: Total Dissolved Solids by Standard Methods 2540 C Batch Analysis date: 2/11/22 Sampled date: 2/9/22 for samples 467395 - 467407

Matrix QC performed on samples 467405 and 467395

QC Type	Analyte	Recovery (%)	Acceptable Range (%)	RPD (%)	RPD Limit (%)
QCS	Total Dissolved Solids	100	85 - 110		
Duplicate	Total Dissolved Solids (467405)			1	<10
Duplicate	Total Dissolved Solids (467395)			<1	<10

Method: Fluoride by Standard Methods 4500 F C Batch Analysis date: 2/17/22 Sampled date: 2/8/22 for samples 467358 – 467368 Sampled date: 2/9/22 for samples 467395 – 467407

Matrix QC performed on samples 467362, 467366 and 467405

QC Type	Analyte		Recovery	Acceptabl	e RPD (%)	RPD Limit (%)
			(%)	Range (%)	
MRL	Fluoride (Total)		108	90 - 110		
QCS	Fluoride (Total)		96	90 - 110		
MS	Fluoride (Total)		97	80 - 120		
	(467362)					
MSD	Fluoride (Total)				<1	<20
	(467362)					
MS	Fluoride (Total)		93	80 - 120		
	(467366)					
MSD	Fluoride (Total)				2	<20
	(467366)					
MS	Fluoride (Total)		92	80 - 120		
	(467405)					
MSD	Fluoride (Total)				<1	<20
	(467405)					
QC Type	Analyte	Con	centration	Limit		
LRB	Fluoride (Total)	<0	.10 mg/L	0.10 mg/L		

Method: Chemical Oxygen Demand by EPA 410.4 Batch Analysis date: 2/8/22 Sampled date: 2/8/22 for samples 467358 - 467368

Matrix QC performed on samples 467361 and 467366
--

QC Type	Analyte	Recovery (%)	Acceptable Range (%)	RPD (%)	RPD Limit (%)
QCS	Chemical Oxygen Demand	91	80-120		
MS	Chemical Oxygen Demand (467361)	107	80-120		
MSD	Chemical Oxygen Demand (467361)			2	<20
MS	Chemical Oxygen Demand (467366)	102	80-120		
MSD	Chemical Oxygen Demand (467366)			<1	<20

Method: Chemical Oxygen Demand by EPA 410.4 Batch Analysis date: 2/9/22 Sampled date: 2/9/22 for samples 467395 - 467407

Matrix QC performed on samples 467398 and 467402

QC Type	Analyte	Recovery (%)	Acceptable Range (%)	RPD (%)	RPD Limit (%)
QCS	Chemical Oxygen Demand	89	80-120		
MS	Chemical Oxygen Demand (467398)	110	80-120		
MSD	Chemical Oxygen Demand (467398)			3	<20
MS	Chemical Oxygen Demand (467402)	90	80-120		
MSD	Chemical Oxygen Demand (467402)			1	<20

Method: Total Alkalinity by Standard Method 2320 B Batch Analysis date: 2/11/22 Sampled date: 2/8/22 for samples 467358 – 467360 and 467362 - 467365

Matrix QC performed on sample 467364

QC Type	Analyte	Recovery (%)	Acceptable Range (%)	RPD (%)	RPD Limit (%)
MRL	Alkalinity (Total)	91	80-120		
QCS	Alkalinity (Total)	102	80-120		
Duplicate	Alkalinity (Total)			<1	<20

Method: Total Alkalinity by Standard Method 2320 B Batch Analysis date: 2/14/22 Sampled date: 2/9/22 for samples 467395 - 467403

Matrix QC performed on sample 467399

QC Type	Analyte	Recovery	Acceptable	RPD (%)	RPD
		(%)	Range (%)		Limit (%)
MRL	Alkalinity (Total)	100	80-120		
QCS	Alkalinity (Total)	103	80-120		
Duplicate	Alkalinity (Total)			<1	<20

Matrix QC performed on sample 467533

QC Type	Analyte	Recovery (%)	Acceptable Range (%)	RPD (%)	RPD Limit (%)
MRL	Alkalinity (Total)	99	80-120		
QCS	Alkalinity (Total)	103	80-120		
Duplicate	Alkalinity (Total)			<1	<20

Method: Total Alkalinity by Standard Method 2320 B Batch Analysis date: 2/16/22 Sampled date: 2/8/22 for samples 467361 and 467368

Matrix QC performed on sample 467361

QC Type	Analyte	Recovery (%)	Acceptable Range (%)	RPD (%)	RPD Limit (%)
MRL	Alkalinity (Total)	100	80-120		
QCS	Alkalinity (Total)	96	80-120		
Duplicate	Alkalinity (Total)			<1	<20

Method: Total Alkalinity by Standard Method 2320 B Batch Analysis date: 2/16/22 Sampled date: 2/8/22 for sample 467367 Sampled date: 2/9/22 for sample 467407

Matrix QC performed on sample 467367

QC Type	Analyte	Recovery (%)	Acceptable Range (%)	RPD (%)	RPD Limit (%)
MRL	Alkalinity (Total)	100	80-120		
QCS	Alkalinity (Total)	102	80-120		
Duplicate	Alkalinity (Total)			<u>*40</u>	<20

*See Narrative

Method: Total Alkalinity by Standard Method 2320 B Batch Analysis date: 2/16/22 Sampled date: 2/8/22 for sample 467366 Sampled date: 2/9/22 for sample 467405

QC Type	Analyte	Recovery (%)	Acceptable Range (%)	RPD (%)	RPD Limit (%)
MRL	Alkalinity (Total)	100	80-120		
QCS	Alkalinity (Total)	102	80-120		
Duplicate	Alkalinity (Total) (467366)			<1	<20
Duplicate	Alkalinity (Total) (467405)			<1	<20

Method: Nitrite + Nitrate by EPA 353.2 Batch Analysis date: 2/14/22 Sampled date: 2/8/22 for samples 467358 - 467368 Sampled date: 2/9/22 for samples 467395 - 467400, 467403, 467405 and 467407

QC Type	Analyte	Recovery (%)		Acceptable Range (%)	RPD (%)	RPD Limit (%)
MRL	Nitrate + Nitrite as Nitrogen	105		50-150		
LFB	Nitrate + Nitrite as Nitrogen	101		90-110		
MS	Nitrate + Nitrite as Nitrogen (467371)	107		90-110		
MSD	Nitrate + Nitrite as Nitrogen (467371)				1	<20
MS	Nitrate + Nitrite as Nitrogen (467366)	<u>*33</u>		90-110		
MSD	Nitrate + Nitrite as Nitrogen (467366)				<1	<20
MS	Nitrate + Nitrite as Nitrogen (467405)	<u>*300</u>		90-110		
MSD	Nitrate + Nitrite as Nitrogen (467405)				2	<20
QC Type	Analyte	Concentrat	ion	Limit		
LRB	Nitrate + Nitrite as Nitrogen	<0.10 mg	/L	0.10 mg/L]	
*See Narra	itive					

Matrix QC performed on sample 467371, 467366 and 467405

Method: Nitrite + Nitrate by EPA 353.2 Batch Analysis date: 2/15/22 Sampled date: 2/9/22 for samples 467401, 467402, 467404 and 467406

Matrix QC performed on sample 467589

QC Type	Analyte	Recovery (%)	Acceptable Range (%)	RPD (%)	RPD Limit (%)
MRL	Nitrate + Nitrite as Nitrogen	98	50-150		
LFB	Nitrate + Nitrite as Nitrogen	99	90-110		
MS	Nitrate + Nitrite as Nitrogen	102	90-110		
MSD	Nitrate + Nitrite as Nitrogen			<1	<20
QC	Analyte	Concentrati	on Limit		
Туре					
LRB	Nitrate + Nitrite as Nitrogen	<0.10 mg/	L 0.10 mg/L		

Method: Ammonia by EPA 350.1 Batch Analysis date: 2/14/22 Sampled date: 2/8/22 for samples 467358 - 467368 Sampled date: 2/9/22 for samples 467395 - 467407

QC Type	Analyte	Recovery (%)	Acceptable Range (%)	RPD (S	%) RPD Limit (%)
MRL	Ammonia (Total) as N	108	50-150		
LFB	Ammonia (Total) as N	103	90-110		
MS	Ammonia (Total) as N (467371)	104	90-110		
MSD	Ammonia (Total) as N (467371)			<1	<20
MS	Ammonia (Total) as N (467366)	105	90-110		
MSD	Ammonia (Total) as N (467366)			<1	<20
MS	Ammonia (Total) as N (467405)	108	90-110		
MSD	Ammonia (Total) as N (467405)			2	<20
QC Type	Analyte	Concentration	Limit		
LRB	Ammonia (Total) as N	<0.2 mg/L	0.2 mg/L	-	

Matrix QC performed on sample 467371, 467366 and 467405

Method: <u>EPA 300.0</u> Batch Analysis date: 2/9/22 to 2/12/22

Sampled date: 2/8/22 for samples 467358, 467359 (no SO4), 467360, 467361 (no SO4), 467362 -467367, and 467368 (no SO4) Sampled date:2/9/22 for samples 467396 - 467404, 467406, 467407

Matrix QC (MS) perfe	ormed on LIMS #(s): 467359,	467366, 467395, 467405
----------------------	-----------------------------	------------------------

QC Type	Analyte	Recovery (%)	Acceptable Range (%)	RPD (%)	RPD Limit (%)
MRL	Chloride	110	50-150		
LFB	Chloride	102	90-110	<1	<20
LD	Chloride (467359)			<1	<20
LD	Chloride (467366)			<1	<20
LD	Chloride (467395)			2	<20
LD	Chloride (467405)			1	<20
MS	Chloride (467359)	99	80-120		
MS	Chloride (467366)	105	80-120		
MS	Chloride (467395)	<u>*-13</u>	80-120		
MS	Chloride (467405)	<u>*-7</u>	80-120		
MRL	Sulfate	113	50-150		
LFB	Sulfate	103	90-110	<1	<20

LD	Sulfate (467359)					2	<20
LD	Sulfate (467366)					<1	<20
LD	Sulfate (467395)					2	<20
LD	Sulfate (467405)					6	<20
MS	Sulfate (467359)			99	80-120		
MS	Sulfate (467366)		1	04	80-120		
MS	Sulfate (467395)		*	-77	80-120		
MS	Sulfate (467405)		*	-70	80-120		
MRL	Nitrite		1	13	50-150		
LFB	Nitrite		1	03	90-110	<1	<20
LD	Nitrite (467359)					2	<20
LD	Nitrite (467366)					2	<20
LD	Nitrite (467395)					<1	<20
LD	Nitrite (467405)					<1	<20
MS	Nitrite (467359)		1	12	80-120		
MS	Nitrite (467366)			10	80-120		
MS	Nitrite (467395)			<u>*0</u>	80-120		
MS	Nitrite (467405)			*1	80-120		
MRL	Nitrate		1	09	50-150		
LFB	Nitrate		1	03	90-110	<1	<20
LD	Nitrate (467359)					<1	<20
LD	Nitrate (467366)					<1	<20
LD	Nitrate (467395)					2	<20
LD	Nitrate (467405)					1	<20
MS	Nitrate (467359)		108		80-120		
MS	Nitrate (467366)		1	10	80-120		
MS	Nitrate (467395)		*	<u>-25</u>	80-120		
MS	Nitrate (467405)		ť	[*] 66	80-120		
QC	Analyte	Concent	ration	Lim	hit		
Туре							
LRB	Chloride	<0.17 mg/L		0.17 n			
LRB	Sulfate	<0.17 mg/L		0.17 n	•		
LRB	Nitrite		3 mg/L	0.033			
LRB	Nitrate	< 0.033	3 mg/L	0.033	mg/L		

LRB Nitrate
*See Narrative

Method: EPA 300.0 Batch Analysis date: 2/25/22

Sampled date: 2/8/22 for samples 467359 (SO4), 467361 (SO4) and 467368 (SO4) Sampled date: 2/9/22 for samples 467395 and 457405

QC Type	Analyte	<u> </u>	Recovery	Acceptable	RPD		
			(%)	Range (%)	(%)	Limit (%)	
MRL	Chloride		120	50-150	0		
LFB	Chloride		101	90-110	3	<20	
LD	Chloride (467395)				7	<20	
LD	Chloride (467405)				3	<20	
MS	Chloride (467395)		99	80-120			
MS	Chloride (467405)		98	80-120			
MRL	Sulfate		111	50-150			
LFB	Sulfate		101	90-110	<1	<20	
LD	Sulfate (467359)				2	<20	
LD	Sulfate (467395)				<1	<20	
LD	Sulfate (467405)				<1	<20	
MS	Sulfate (467359)		99	80-120			
MS	Sulfate (467395)		95	80-120			
MS	Sulfate (467405)		95	80-120			
MRL	Nitrite		118	50-150			
LFB	Nitrite		102	90-110	3	<20	
LD	Nitrite (467395)				<1	<20	
LD	Nitrite (467405)				*200	<20	
MS	Nitrite (467395)		108	80-120			
MS	Nitrite (467405)		107	80-120			
MRL	Nitrate		116	50-150			
LFB	Nitrate		101	90-110	4	<20	
LD	Nitrate (467395)				4	<20	
LD	Nitrate (467405)				3	<20	
MS	Nitrate (467395)		120	80-120			
MS	Nitrate (467405)		102	80-120			
QC Type	Analyte	Co	ncentration	Limit			
LRB	Chloride		<0.17 mg/L	0.17 mg	/L		
LRB	Sulfate		<0.17 mg/L	0.17 mg	/L		
LRB	Nitrite		<0.033 mg/L				
LRB	Nitrate		<0.033 mg/L	0.033 mg			
See Narrative							

Matrix QC (MS) performed on LIMS #(s): 467359 (SO4), 467395, and 467405

*See Narrative

Method: EPA 200.7 Batch Analysis date: 2/11/22 for all except B Batch Analysis date: 2/24/22 for B Digestion date: 2/10/22 for all except B Digestion date: 2/23/22 for B Sampled date: 2/8/22 for samples 467358 - 467368

QC Type	Analyte	Recovery	Acceptable	RPD	RPD
		(%)	Range (%)	(%)	Limit (%)
MRL	Boron (Total Recoverable)	103	50-150		
LFB	Boron (Total Recoverable)	104	85-115		
MS	Boron (Total Recoverable) (467363)	108	70-130		
MSD	Boron (Total Recoverable) (467363)			<1	<20
MS	Boron (Total Recoverable) (467366)	110	70-130		
MSD	Boron (Total Recoverable) (467366)			1	<20
MRL	Calcium (Total Recoverable)	114	50-150		
LFB	Calcium (Total Recoverable)	101	85-115		
MS	Calcium (Total Recoverable) (467363)	*39	70-130		
MSD	Calcium (Total Recoverable) (467363)			<1	<20
MS	Calcium (Total Recoverable) (467366)	*251	70-130		
MSD	Calcium (Total Recoverable) (467366)			1	<20
MRL	Iron (Total Recoverable)	111	50-150		
LFB	Iron (Total Recoverable)	103	85-115		
MS	Iron (Total Recoverable) (467363)	110	70-130		
MSD	Iron (Total Recoverable) (467363)			<1	<20
MS	Iron (Total Recoverable) (467366)	114	70-130		
MSD	Iron (Total Recoverable) (467366)			2	<20
MRL	Potassium (Total Recoverable)	114	50-150		
LFB	Potassium (Total Recoverable)	103	85-115		
MS	Potassium (Total Recoverable) (467363)	110	70-130		
MSD	Potassium (Total Recoverable) (467363)			<1	<20
MS	Potassium (Total Recoverable) (467366)	115	70-130		
MSD	Potassium (Total Recoverable) (467366)			<1	<20
MRL	Magnesium (Total Recoverable)	112	50-150		
LFB	Magnesium (Total Recoverable)	102	85-115		
MS	Magnesium (Total Recoverable) (467363)	<u>*-65</u>	70-130		
MSD	Magnesium (Total Recoverable) (467363)			<1	<20
MS	Magnesium (Total Recoverable) (467366)	<u>*383</u>	70-130		
MSD	Magnesium (Total Recoverable) (467366)			<1	<20
MRL	Sodium (Total Recoverable)	107	50-150		
LFB	Sodium (Total Recoverable)	102	85-115		
MS	Sodium (Total Recoverable) (467363)	<u>*-1680</u>	70-130		
MSD	Sodium (Total Recoverable) (467363)			1	<20
MS	Sodium (Total Recoverable) (467366)	<u>*857</u>	70-130		
MSD	Sodium (Total Recoverable) (467366)			<1	<20

QC Type	Analyte	Concentration	Limit
LRB	Boron (Total Recoverable)	<4.80 ug/L	4.80 ug/L
LRB	Calcium (Total Recoverable)	<18.1 ug/L	18.1 ug/L
LRB	Iron (Total Recoverable)	<1.57 ug/L	1.57 ug/L
LRB	Potassium (Total Recoverable)	<227 ug/L	227 ug/L
LRB	Magnesium (Total Recoverable)	<10.0 ug/L	10.0 ug/L
LRB	Sodium (Total Recoverable)	<u>*32.8 ug/L</u>	24.0 ug/L

*See Narrative

Method: EPA 200.7 Batch Analysis date: 2/23/22 Digestion date: 2/14/22 Sampled date: 2/9/22 for samples 467395 - 467407

Matrix QC performed on samples 467401 and 467405

QC Type	Analyte	Recovery	Acceptable	RPD	RPD
		(%)	Range (%)	(%)	Limit (%)
MRL	Boron (Total Recoverable)	108	50-150		
LFB	Boron (Total Recoverable)	108	85-115		
MS	Boron (Total Recoverable) (467401)	127	70-130		
MSD	Boron (Total Recoverable) (467401)			<1	<20
MS	Boron (Total Recoverable) (467405)	114	70-130		
MSD	Boron (Total Recoverable) (467405)			<1	<20
MRL	Calcium (Total Recoverable)	113	50-150		
LFB	Calcium (Total Recoverable)	92	85-115		
MS	Calcium (Total Recoverable) (467401)	<u>*-312</u>	70-130		
MSD	Calcium (Total Recoverable) (467401)			<1	<20
MS	Calcium (Total Recoverable) (467405)	<u>*159</u>	70-130		
MSD	Calcium (Total Recoverable) (467405)			<1	<20
MRL	Iron (Total Recoverable)	109	50-150		
LFB	Iron (Total Recoverable)	103	85-115		
MS	Iron (Total Recoverable) (467401)	97	70-130		
MSD	Iron (Total Recoverable) (467401)			<1	<20
MS	Iron (Total Recoverable) (467405)	102	70-130		
MSD	Iron (Total Recoverable) (467405)			<1	<20
MRL	Potassium (Total Recoverable)	110	50-150		
LFB	Potassium (Total Recoverable)	104	85-115		
MS	Potassium (Total Recoverable) (467401)	108	70-130		
MSD	Potassium (Total Recoverable) (467401)			<1	<20
MS	Potassium (Total Recoverable) (467405)	115	70-130		
MSD	Potassium (Total Recoverable) (467405)			<1	<20
MRL	Magnesium (Total Recoverable)	106	50-150		
LFB	Magnesium (Total Recoverable)	103	85-115		
MS	Magnesium (Total Recoverable) (467363)	<u>*150</u>	70-130		
MSD	Magnesium (Total Recoverable) (467363)			<1	<20

Magnesium (Total Recoverable) (467366)	<u>*494</u>	70-	130					
Magnesium (Total Recoverable)				1		<20		
(467366)								
Sodium (Total Recoverable)	126	50-	150					
Sodium (Total Recoverable)	101	85-	115					
Sodium (Total Recoverable) (467401)	<u>*600</u>	70-	130					
Sodium (Total Recoverable) (467401)				<1		<20		
Sodium (Total Recoverable) (467405)	<u>*1090</u>	70-	130					
Sodium (Total Recoverable) (467405)				2		<20		
Analyte	Concentrati	ion		Limit				
Boron (Total Recoverable)	<4.80 ug/l	_	4.80 ug/L					
Calcium (Total Recoverable)	<18.1 ug/l	_	18	3.1 ug/L				
Iron (Total Recoverable)	<1.57 ug/l	_	1.	57 ug/L				
Potassium (Total Recoverable)	<227 ug/L	27 ug/L 22		<227 ug/L 227 ug/		27 ug/L		
Magnesium (Total Recoverable)	<10.0 ug/l	_	10).0 ug/L				
Sodium (Total Recoverable)	<24.0 ug/l	_	24	l.0 ug/L				
	(467366)Sodium (Total Recoverable)Sodium (Total Recoverable)Sodium (Total Recoverable) (467401)Sodium (Total Recoverable) (467401)Sodium (Total Recoverable) (467405)Sodium (Total Recoverable) (467405)Sodium (Total Recoverable) (467405)Sodium (Total Recoverable) (467405)Calcium (Total Recoverable)Iron (Total Recoverable)Iron (Total Recoverable)Potassium (Total Recoverable)Magnesium (Total Recoverable)	(467366)Magnesium (Total Recoverable) (467366)Sodium (Total Recoverable)101Sodium (Total Recoverable)101Sodium (Total Recoverable) (467401)Sodium (Total Recoverable) (467401)Sodium (Total Recoverable) (467405)Sodium (Total Recoverable)(467405)Sodium (Total Recoverable)(467405)Sodium (Total Recoverable)(467405)Sodium (Total Recoverable)(10.0 ug/lSodium (Total Recoverable)(10.0 ug/lSodium (Total Recoverable)(227 ug/lMagnesium (Total Recoverable)(227 ug/lSodium (Total Recoverable)(227 ug/lSodium (Total Recoverable)(227 ug/lMagnesium (Total Recoverable)(24.0 ug/lSodium (Total Recoverable)(24.0 ug/lSodium (Total Recoverable)(24.0 ug/lSodium (Total Recoverable)(24.0 ug/l	(467366)Image (467366)Magnesium (Total Recoverable) (467366)126Sodium (Total Recoverable)101Sodium (Total Recoverable)101Sodium (Total Recoverable) (467401)*600Sodium (Total Recoverable) (467401)*1090Sodium (Total Recoverable) (467405)*1090Sodium (Total Recoverable) (467405)*1090Sodium (Total Recoverable) (467405)*1090Sodium (Total Recoverable) (467405)*1090Sodium (Total Recoverable) (467405)Image: ConcentrationSodium (Total Recoverable)Sodium (Total Recoverable)<1.8.1 ug/L	(467366)	(467366)1Magnesium (Total Recoverable) (467366)126Sodium (Total Recoverable)126Sodium (Total Recoverable)101Sodium (Total Recoverable)101Sodium (Total Recoverable)467401)Sodium (Total Recoverable)(467401)Sodium (Total Recoverable)(467405)Sodium (Total Recoverable)<18.1 ug/L	(467366) 1 Magnesium (Total Recoverable) 1 (467366) 126 Sodium (Total Recoverable) 101 Sodium (Total Recoverable) 101 Sodium (Total Recoverable) 101 Sodium (Total Recoverable) 101 Sodium (Total Recoverable) (467401) Sodium (Total Recoverable) (467405) Sodium (Total Recoverable) <18.1 ug/L		

*See Narrative

EPA Method: EPA 200.8 Digestion date: 2/10/22 Batch Analysis date: 2/14/22 Sampled date: 2/8/22 for samples 467358 – 467363 and 467367

Matrix QC performed on sample 467363

QC Type	Analyte	Recovery (%)		ceptable ange (%)	PD %)	RPD Limit (%)
MRL	Manganese (Total Recoverable)	97		50-150	 	
LFB	Manganese (Total Recoverable)	98	5	85-115		
MS	Manganese (Total Recoverable)	92	-	70-130		
MSD	Manganese (Total Recoverable)				<1	<20
MRL	Selenium (Total Recoverable)	112	ļ	50-150		
LFB	Selenium (Total Recoverable)	97	8	85-115		
MS	Selenium (Total Recoverable)	87	-	70-130		
MSD	Selenium (Total Recoverable)				5	<20
QC Type	Analyte	Concentrat	ion	Limit		
LRB	Manganese (Total Recoverable)	<0.30 ug/	L	0.30 ug/l		
LRB	Selenium (Total Recoverable)	<0.44 ug/	Ľ	0.44 ug/l		

EPA Method: EPA 200.8 Digestion date: 2/14/22 Batch Analysis date: 2/15/22 Sampled date: 2/9/22 for samples 467395 – 467401

Matrix QC performed on sample 467401

QC Type	Analyte	Recovery (%)	Accept Range		RPD (%)	RPD Limit (%)
MRL	Manganese (Total Recoverable)	117	50-1	50		
LFB	Manganese (Total Recoverable)	99	85-1	15		
MS	Manganese (Total Recoverable)	87	70-1	30		
MSD	Manganese (Total Recoverable)				2	<20
MRL	Selenium (Total Recoverable)	94	50-1	50		
LFB	Selenium (Total Recoverable)	94	85-1	15		
MS	Selenium (Total Recoverable)	74	70-1	30		
MSD	Selenium (Total Recoverable)				1	<20
QC Type	Analyte	Concentrat	ion	Limit		
LRB	Manganese (Total Recoverable)	<0.30 ug/	L 0.	.30 ug/L	-	
LRB	Selenium (Total Recoverable)	<0.44 ug/	′L 0.	.44 ug/L	-	

EPA Method: EPA 200.8 Digestion date: 2/15/22 Batch Analysis date: 2/25/22 Sampled date: 2/8/22 for samples 467364 – 467366 and 467368

Matrix QC performed on sample 467366

QC Type	Analyte	Recovery (%)		ceptable nge (%)	PD %)	RPD Limit (%)
MRL	Manganese (Total Recoverable)	116		50-150	 / • /	
LFB	Manganese (Total Recoverable)	98	8	35-115		
MS	Manganese (Total Recoverable)	108	7	'0-130		
MSD	Manganese (Total Recoverable)				<1	<20
MRL	Selenium (Total Recoverable)	100	5	60-150		
LFB	Selenium (Total Recoverable)	87	8	85-115		
MS	Selenium (Total Recoverable)	114	7	'0-130		
MSD	Selenium (Total Recoverable)				2	<20
QC Type	Analyte	Concentrati	ion	Limit		
LRB	Manganese (Total Recoverable)	<0.30 ug/l		0.30 ug/l		
LRB	Selenium (Total Recoverable)	<0.44 ug/	L	0.44 ug/l		

EPA Method: EPA 200.8 Digestion date: 2/14/22 Batch Analysis date: 2/28/22 Sampled date: 2/9/22 for samples 467402 – 467406

Matrix QC performed on sample 467405

QC Type	Analyte	Recovery (%)	Acceptable Range (%)		RPD (%)	RPD Limit (%)
MRL	Manganese (Total Recoverable)	118	50-150			
LFB	Manganese (Total Recoverable)	100	85-115			
MS	Manganese (Total Recoverable)	89	70-130			
MSD	Manganese (Total Recoverable)				<1	<20
MRL	Selenium (Total Recoverable)	102	50-150			
LFB	Selenium (Total Recoverable)	95	85-115			
MS	Selenium (Total Recoverable)	81	70-130			
MSD	Selenium (Total Recoverable)				<1	<20
QC Type	Analyte	Concentrat	ion Lim	t		
LRB	Manganese (Total Recoverable)	<0.30 ug/l	L 0.30 u	g/L		
LRB	Selenium (Total Recoverable)	<0.44 ug/	L 0.44 u	g/L		

LD – Laboratory Duplicate LFB – Laboratory Fortified Blank LRB – Laboratory Reagent Blank (Method Blank) QCS – Quality Control Sample MRL – Minimum Reporting Limit (Verification) MS – Matrix Spike MSD – Matrix Spike Duplicate <u>Underline</u> – Data was outside the limit

AR	RT 1: Initiator (perso	on who first noti	ced incident):				
lea	se complete one form	n per project.					
nitia	ated by:			Date:			
ssue	e (describe in detail):						
ctio	on Taken, if any:						
	Sample Detections le Name for Blank Detec	ction:		LIMS	#:		
		Blank value	Reporting	Associated	As	sociated	Sample
ara	ameter	(units)	Limit (units)	Sample Name	Sam	ple LIMS #	Value (units)
	Sample LIMS #	Sam	ple Point	Sample Date		Ana	alysis Affected
tion							
LIMS Section							
LIN							

F01-02910 (03/2021)

Part 2: Customer Contact Detai	i ls (Completed b	ov Proiect	Coordination):
		,,,	

	Analysis Details					
Parameters	Method #	Compliance (Select one)				
		YES NO				
		YES NO				
		YES NO				
		YES NO				
		YES NO				
		YES NO				
		YES NO				

Individual(s) contacted:	Date:
Generally, the project owner(s)	

The samples to be qualified are actually 467360 and 467362. Sample 467364 does not need to be qualified. wma 3/1/22

Part 3: Approval (Section to be completed by LSS Lead):

Final Actions Taken (Reject Samples/Data, Accept Samples/Data, Qualify Samples/Data, Other)

Signature/Print last name:_	Lesley Susic	Date:
	0	

Parameter	Associated	Associated	Sample	Sample
	Sample	Sample	Date	Concentration
	Name	LIMS #		(ppb)
200.7 TR	FC_2A	467358	02/08/2022	1210
Fe				
200.7 TR	FC_1A	467359	02/08/2022	208
Fe				
200.7 TR	WW_5A	467360	02/08/2022	62.4
Fe				
200.7 TR	WW_6A	467361	02/08/2022	1130
Fe				
200.7 TR	DUPLICATE	467368	02/08/2022	278
Fe				
200.7 TR	CC_1	467362	02/08/2022	36.2
Fe				
200.7 TR	FC_3B	467363	02/08/2022	1990
Fe				
200.7 TR	FC_3A	467364	02/08/2022	808
Fe				
200.7 TR	SC_8	467365	02/08/2022	412
Fe				
200.7 TR	SC_10	467366	02/08/2022	2380
Fe				

AR	T 1: Initiator (perso	on who first noti	ced incident):				
lea	se complete one forn	n per project.					
nitia	ated by:			Date:			
ssue	e (describe in detail):						
ctio	on Taken, if any:						
	Sample Detections le Name for Blank Detec	ction:		LIMS	#:		
		Blank value	Reporting	Associated	As	sociated	Sample
ara	imeter	(units)	Limit (units)	Sample Name	Sam	ple LIMS #	Value (units)
	Sample LIMS #	Sam	ple Point	Sample Date		Ana	alysis Affected
tion							
LIMS Section							
LIZ							

F01-02910 (03/2021)

Part 2: Customer Contact Details	(Completed by	v Proie	ct Coordination)	:
	Completed b	,		•

	Analysis Details		
Parameters	ameters Method # Compliance (Select one)		
		YES NO	
		YES NO	
		YES NO	
Generally, the project owner(s)		Date:	
Part 3 : Approval (Section to Final Actions Taken (Reject San		ta, Qualify Samples/Data, Other)	
Signature/Print last name:	Lesley Susic	Date:	

Parameter	Equipment Blank value (units)	Reporting Limit (units)	Associated Sample Name	Associated Sample LIMS #	Sample Value (units)
NO2+NO3	0.21 mg/L	0.10	FC_2A	467358	0.34mg/L
NO2+NO3	0.21 mg/L	0.10	FC_1A	467359	31 mg/L
NO2+NO3	0.21 mg/L	0.10	WW_5A	467360	160 mg/L
NO2+NO3	0.21 mg/L	0.10	WW_6A	467361	750 mg/L
NO2+NO3	0.21 mg/L	0.10	DUPLICATE	467368	750 mg/L
NO2+NO3	0.21 mg/L	0.10	CC_1	467362	26 mg/L
NO2+NO3	0.21 mg/L	0.10	FC_3B	467363	<0.10 mg/L
NO2+NO3	0.21 mg/L	0.10	FC_3A	467364	3.2 mg/L
NO2+NO3	0.21 mg/L	0.10	SC_8	467365	1100 mg/L
NO2+NO3	0.21 mg/L	0.10	SC_10	467366	240 mg/L
Sample LIMS #	Sample Point	Sample Date	Analysis Affected		
467358	FC_2A	2/8/2022	NO2+NO3		
467359	FC_1A	2/8/2022	NO2+NO3		
467360	WW_5A	2/8/2022	NO2+NO3		
467361	WW_6A	2/8/2022	NO2+NO3		
467368	DUPLICATE	2/8/2022	NO2+NO3		
467362	CC_1	2/8/2022	NO2+NO3		
467363	FC_3B	2/8/2022	NO2+NO3		
467364	FC_3A	2/8/2022	NO2+NO3		
467365	SC_8	2/8/2022	NO2+NO3		
467366	SC_10	2/8/2022	NO2+NO3		

APPENDIX F

Alternative Source Demonstration – Additional Information

August 9, 2022

Ms. Ashley Lawrence Colorado Department of Public Health and Environment Hazardous Materials and Waste Management Division 222 S. Sixth St., Room 232 Grand Junction, CO 81501

Ms. Jill Parisi, P.E. Colorado Department of Public Health and Environment Hazardous Materials and Waste Management Division 4300 Cherry Creek Drive South Denver, Colorado 80246

RE: Additional Information Alternative Source Demonstration Assessment Monitoring, Selenium Coal Combustion Residuals Landfill Colorado Springs Utilities' Clear Spring Ranch El Paso County, Colorado

Dear Ms. Lawrence and Ms. Parisi,

Colorado Springs Utilities (Utilities) completed the *Coal Combustion Residuals (CCR) Landfill Alternative Source Demonstration Assessment Monitoring, Selenium, Revision 0* in April 2022. On August 4, 2022, Utilities met with you to discuss this Alternative Source Demonstration (ASD) for Selenium. Based on our conversation, we understand that the Colorado Department of Public Health and Environment (CDPHE) is requesting the below information concerning additional activities that Utilities is taking as a result of the CCR Landfill ASD for Selenium. As discussed with you, Utilities will conduct the following activities:

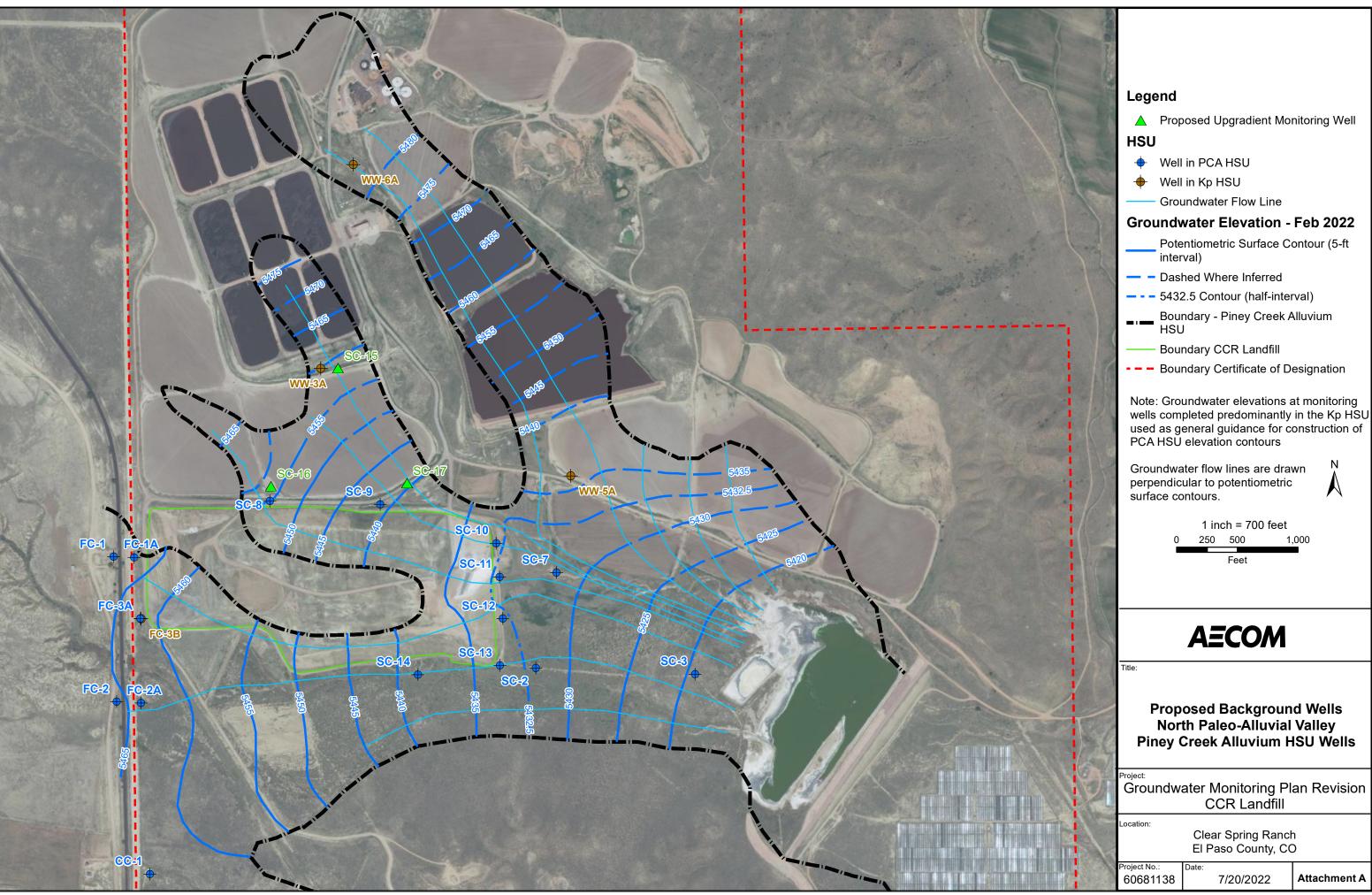
- Install additional background monitoring wells. The planned locations of these additional monitoring wells are depicted in Attachment A.
- Conduct an additional groundwater sampling and analysis event at the proposed new monitoring wells, as well as at surrounding groundwater monitoring wells. The monitoring wells proposed for sample collection and the analytes for laboratory analysis and reporting are shown in Attachment B.
- Prepare a Technical Memorandum summarizing the results of the groundwater monitoring well installation and additional sampling activities evaluation and recommending future compliance actions, activities, and evaluations. The recommendations in the Technical Memorandum will be based on compliance with the EPA CCR Rule and the Colorado Solid Waste Regulations in consideration of the CCR Landfill ASD for Selenium. Utilities will provide the Technical Memorandum to the CDPHE for review.

Environmental Services Department P.O. Box 1103, Mail Code 940 Colorado Springs, CO 80947-0940

Utilities respectfully requests that the CDPHE approve the April 2022 CCR Landfill ASD for Selenium. Please let us know if you have any questions or require additional information.

Sincerely,

COLORADO SPRINGS UTILITIES


Heather Barbare, P.E., CHMM Senior Environmental Engineer Environmental Services Department | Technical Service Section hbarbare@csu.org 719-668-1821

Attachment A – Proposed Background Wells Figure Attachment B – Monitoring Well and Analyte Sampling Table

Electronic Copy: Nina Ruiz, El Paso County Planning Department

ATTACHMENT A

Note: Groundwater elevations at monitoring wells completed predominantly in the Kp HSU used as general guidance for construction of PCA HSU elevation contours

Project No.:	Date:	
60681138	7/20/2022	Attachment A

ATTACHMENT B

Attachment B

Summary of Monitoring Wells and Analytes of Interest for Background Evaluation ASD SC-10

		Location Relative to CCR		First	Last
Well ID	Status	Landfill	Rationale	Sampled	Sampled
SC-15	Proposed CCR well	Upgradient, near WW-3A	Proposed PCA HSU background well	Proposed	-
SC-16	Proposed CCR well	Upgradient, near SC-8	Proposed PCA HSU background well	Proposed	-
SC-17	Proposed CCR well	Upgradient, near SC-9	Proposed PCA HSU background well	Proposed	-
WW-3A	Existing well	Upgradient, Kp HSU	Biosolid area, FSB, KP HSU	Jan-86	Feb-22
SC-8	Existing well	Upgradient/Cross-gradient	Adjacent to CCR Landfill, PCA HSU	Jun-16	Feb-22
SC-9	Existing well	Upgradient/Cross-gradient	Adjacent to CCR Landfill, PCA HSU	Jun-16	Feb-22
SC-10	Existing CCR well	Downgradient (north)	Downgradient CCR Monitoring Well, PCA HSU	Jun-16	Feb-22
SC-11	Existing CCR well	Downgradient (north)	Downgradient CCR Monitoring Well, PCA HSU	Jun-16	Feb-22
SC-12	Existing CCR well	Downgradient (south)	Downgradient CCR Monitoring Well, PCA HSU	Jun-16	Feb-22
SC-13	Existing CCR well	Downgradient (south)	Downgradient CCR Monitoring Well, PCA HSU	Jun-16	Feb-22
SC-7	Existing well	Downgradient (north)	Downgradient of CCR Landfill, PCA HSU	Feb-09	Feb-22

PCA HSU - Piney Creek Alluvium Hydrostratigraphic Unit Kp HSU - Cretaceous Pierre Shale Hydrostratigraphic Unit

Recommended Analyte List

Applytos	Major ions (calcium, sodium, potassium, magnesium, total alkalinity, bicarbonate, chloride, sulfate),
Analytes TDS, COD, nitrate, nitrite, nitrate+nitrite as nitrogen, ammonia, iron, manganese, selenium, fluoride, boron	
Field water	
quality	
parameters	pH, DO, ORP, specific conductance, color, clarity, DTW prior to sampling, DTW after sampling, well yield during sampling

Electronic document submittal

hbarbare@csu.org

August 10, 2022

Ms. Heather Barbare P.O. Box 1103, Mail Code 940 Colorado Springs, Colorado 80947

RE: Coal Combustion Residuals Landfill Alternative Source Demonstration - Selenium Colorado Springs Utilities Clear Spring Ranch ELP51 / CDPHE SW Monitoring

Dear Ms. Barbare,

The Solid Waste and Materials Management Program, Hazardous Materials and Waste Management Division of the Colorado Department of Public Health and Environment (the Division) completed reviews of the following reports submitted by Colorado Springs Utilities on behalf of Clear Spring Ranch:

- Coal Combustion Residuals (CCR) Landfill Alternative Source Demonstration, Assessment Monitoring, Selenium, El Paso County, Colorado dated April, 2022. The electronic version was received April, 2022
- Additional Information Alternative Source Demonstration Assessment Monitoring, Selenium, El Paso County, Colorado dated August 9, 2022. The electronic version was received August 9, 2022

The technical review was conducted to determine compliance with the requirements set forth in the Solid Wastes Disposal Sites and Facilities Act, Title 30, Article 20, Part 1 of the Colorado Revised Statutes, as amended (Act), with the regulations promulgated there under 6 CCR 1007-2 (Regulations), with the current EDOP dated March 2008 and the updated Groundwater Monitoring Work Plan dated July 2019. The Water Quality Control Commission Regulation 41, the Basic Standards for Groundwater (BSGW), was also reviewed.

On August 4, 2022 CDPHE met with Colorado Springs Utilities and Clear Springs Ranch to discuss the proposed ASD and path forward for the CCR Landfill. Clear Spring Ranch submitted additional information on August 9, 2022. Based on its review of both documents, the Division accepts the plan proposed by Colorado Springs Utilities and Clear Spring Ranch is approved to begin demonstration activities.

Note: The division's acceptance of the Report is not meant to imply agreement with any opinions, regulatory or technical interpretations, characterization of CDPHE positions or guidance, recommendations for future actions or other subjective statements made in the Report.

In closing, the Division is authorized to bill for the review of technical submittals pursuant to C.R.S. 30-20-109 (2) (b) at the rate of \$125 per hour. An invoice for the Division's review will be transmitted to you under separate cover. Should you have any questions regarding this correspondence, please contact me by phone at (720)-213-8028 or email at <u>ashley.lawrence@state.co.us.</u> With Regards,

Ashley Lawrence Environmental Protection Specialist Solid Waste Permitting Unit Hazardous Materials & Waste Management Division

Ec: Brock Foster - <u>bfoster@csu.org</u> Jill Parisi - <u>jill.parisi@state.co.us</u>