

# **Electric and Gas Integrated Resource Plans**

Utilities Board Special Meeting for Approval June 26, 2020

### Agenda

- Welcome and Introduction
- Summary of UPAC Recommendations
- Portfolios 16 and 17 Comparison
- Customer Comment
- Board Discussion and Decision

# **Public Process Update**

**Colorado Springs Utilities** 

### Public Engagement Summary

#### **Public Comment Summary**

#### Emails to energyvision@csu.org

- 38 received 5/29-6/15
- 37 received 6/15-6/17

#### **Public Meetings Speakers**

28 people spoke at the Utilities Board June 17 meeting

- 6 Stakeholder Groups
- 22 Citizens/Customers



# Summary of UPAC Recommendations

**Colorado Springs Utilities** 

### **EIRP Recommendation**

| Pathway      | Portfolio    | Carbon targets | 2022                      | 2023                                 | 2025                                        | 2026 | 2030                                        | 2035                          | 2040 | 2050 |
|--------------|--------------|----------------|---------------------------|--------------------------------------|---------------------------------------------|------|---------------------------------------------|-------------------------------|------|------|
| Pathway<br>E |              | 2030 80%       |                           | Drake retire                         |                                             |      | Nixon 1 retire                              | Birdsall retire               |      |      |
|              | Portfolio 16 | 2050 90%       |                           | Small, mobile, natural gas generator |                                             |      | Gas/renewable/<br>storage/DSM               | Gas/renewable/<br>Storage/DSM |      |      |
| Gas          | G-E16        |                | LDC IT with oil<br>backup |                                      | Expand/new<br>pipeline capacity<br>with NNT |      | Expand/new<br>pipeline capacity<br>with NNT |                               |      |      |

#### Reasons for UPAC's recommendation of Portfolio 16:

- High Attribute ranking
- Meets state regulatory carbon reduction
- Solid financial results
- Reasonable risk profile
- Uses proven innovative technology
- Earliest Drake decommissioning
- Provides flexibility on Nixon 1 replacement

#### Overview

- Carbon reduction goals: 80% by 2030, 90% by 2050
- Coal retirement: Drake Power Plant no later than 2023, Nixon Power Plant no later than 2030
- Other retirement: Birdsall Power Plant no later than 2035

Resource Change

2021-2050 (MW)

208

Drako (2023)

· Replacement: Small, mobile natural gas generators, renewable energy, storage and other natural gas generation plus energy efficiency initiatives

| Pathway | Portfolio    | Carbon targets | 2022                      | 2023                                    | 2025                                        | 2026 | 2030                                        | 2035                          | 2040 | 2050 |
|---------|--------------|----------------|---------------------------|-----------------------------------------|---------------------------------------------|------|---------------------------------------------|-------------------------------|------|------|
| Pathway | D            | 2030 80%       |                           | Drake retire                            |                                             |      | Nixon 1 retire                              | Birdsall retire               |      |      |
| E       | Portfolio 16 | 2050 90%       |                           | Small, mobile, natural<br>gas generator |                                             |      | Gas/renewable/<br>storage/DSM               | Gas/renewable/<br>Storage/DSM |      |      |
| Gas     | G-E16        |                | LDC IT with oil<br>backup |                                         | Expand/new<br>pipeline capacity<br>with NNT |      | Expand/new<br>pipeline capacity<br>with NNT |                               |      |      |



| Droke (2022)    | 200  | Description                           | 336.Z/B  |                                                                 |                        |
|-----------------|------|---------------------------------------|----------|-----------------------------------------------------------------|------------------------|
| Drake (2023)    | -200 | Requirement                           |          | Cost/                                                           | 63                     |
| Nixon 1 (2030)  | -207 | Average Annual Revenue                | \$1.21B  | Environment/                                                    |                        |
| Nixon 2-3       | 0    | Requirement                           |          | Stewardship                                                     | 72                     |
| Birdsall (2035) | -54  | Service Coverage                      | 2.09     | Flexibility/<br>Diversity                                       | 75                     |
| Front Range     | 0    | Average Adjusted Days<br>Cash on Hand | 179      | Innovation                                                      | 50                     |
| New Gas         | 523  | 30 Year Electric Revenue              | \$18.0B  | I otal score (normalized)                                       | )8.7                   |
| DSM             | 52   | Sensitivities (\$ incr                | emental) | Risks                                                           |                        |
| Storage         | 75   | Social Cost                           | \$1.05B  | <ul> <li>Tight on capacity<br/>early Drake</li> </ul>           | with                   |
| Solar           | 150  | High Load                             | \$308M   | decommissioning                                                 |                        |
| Wind            | 100  | Low Load                              | (\$238)M | <ul> <li>Electification will<br/>provide a challence</li> </ul> | je in                  |
| Hydro           | 0    | High Gas                              | \$535M   | serving increased<br>while reducing GH                          | load<br><del>I</del> G |
| Geothermal      | 10   | Low Gas                               | (\$482)M | emissions                                                       | rick                   |
| Biomass/ Biogas | 10   | 90x30                                 | \$217M   | <ul> <li>Future regulatory<br/>(ex. 100% renewa</li> </ul>      | ables)                 |
| Carbon Capture  | 0    |                                       |          | <ul> <li>Transmission imp</li> </ul>                            | ort                    |
|                 | U    | 100x50                                | \$193M   | limitations for wind                                            | 1                      |
| Nuclear         | 0    | 100x50                                | \$193M   | limitations for wind<br>generation                              | d                      |

**Financial Metrics** 

\$36.27B

30 Year Revenue

Attribute Score

93

Reliability

#### **EIRP PORTFOLIO 16**





Financial rank Attribute rank

С

### **GIRP Recommendation**

| Portfolio | 2022 | 2025    | 2030 | 2032                  | 2034 | 2035 | 2040            | 2043 | 2050 |
|-----------|------|---------|------|-----------------------|------|------|-----------------|------|------|
| G-6       |      | DR + EE |      | Propane Air Expansion |      |      | Propane Air New |      |      |

#### **Reasons for UPAC's recommendation of Portfolio 6:**

- Best attribute score
- Lowest revenue requirement
- Contains both DR and EE features
- Controllable risk profile
- Defers new infrastructure requirements

#### **GIRP PORTFOLIO 6**

#### Overview

Resource CI 2021-2050 (E

Existing PA

New PA

New Pipeline

Capacity

New LNG

Demand

Response

Energy

Efficiency

Addition: Demand response, energy efficiency, new propane air, existing propane air expansion

|                                                       | Portfolio | 2022 | 2025                                        | 2030 | 2032                     | 2034 | 2035 | 2040               | 2043 | 2050 |  |
|-------------------------------------------------------|-----------|------|---------------------------------------------|------|--------------------------|------|------|--------------------|------|------|--|
| Pathway C<br>DSM + new<br>peak<br>shaving<br>capacity | G-6       |      | Demand response<br>and energy<br>efficiency |      | Propane air<br>expansion |      |      | Propane<br>air new |      |      |  |





С

| nange   | Financial Me        | Financial Metrics |                |       |  |  |  |  |  |
|---------|---------------------|-------------------|----------------|-------|--|--|--|--|--|
| )th/hr) | 30 Year Revenue     | ¢25.71B           | Reliability    | 83.5  |  |  |  |  |  |
|         | Requirement         | \$35.7 ID         | Cost/          | 100 ( |  |  |  |  |  |
| 300     | Average Annual      |                   | Implementation | 100.0 |  |  |  |  |  |
| 650     | Revenue             | \$1.190B          | Environment/   |       |  |  |  |  |  |
|         | Requirement         |                   | Stewardship    | 100.0 |  |  |  |  |  |
| 0       | 30 Year Gas Revenue | \$5.73B           | Eloxibility/   |       |  |  |  |  |  |
| 0       |                     |                   | Diversity      | 86.8  |  |  |  |  |  |
|         |                     |                   | Diversity      |       |  |  |  |  |  |
| 500     |                     |                   | Innovation     | 72.7  |  |  |  |  |  |
|         |                     |                   | Total score    | 100 ( |  |  |  |  |  |
| 150     |                     |                   | (normalized)   | 100.0 |  |  |  |  |  |
|         |                     |                   |                |       |  |  |  |  |  |

| Sensitivities (\$ ir                    | ncremental)                                     |
|-----------------------------------------|-------------------------------------------------|
| High Growth                             | \$7.79M                                         |
| Low Growth                              | (\$12.54M)                                      |
| Renewable Natural<br>Gas (voluntary)    | \$64.10M                                        |
| Non-firm Options                        | Included in EIRP<br>Portfolios                  |
| Peaking Capacity                        | Requires Study                                  |
| High DR                                 | NΔ                                              |
| High EE                                 | NA                                              |
| High DSM                                | (\$1.70M)                                       |
| Distributed Generation<br>on LDC System | Increases EIRP<br>New Fixed Gas<br>Costs by 86% |

#### Risks

- High growth advances capital plan by 5 years, increases fixed gas costs
- Potential public push back on new PA Plant
- Electrification reduces load growth/revenue
- Regulatory risk mandating RNG
- Non-firm options require oil backup for DG
- DSM needs proof of concept, program development

# Portfolios 16 and 17 Comparison

Colorado Springs Utilities

## Why Consider Portfolio 17

- Community input
- Board interest
- CEO/ Leadership/ Employee Recommendation

#### **EIRP PORTFOLIO 17**

| Pathway | Portfolio                 | Carbo | n targets | 2022                      | 2023                                    | 2025                                        | 2026 | 2030                         | 2035                         | 2040 | 2050 |
|---------|---------------------------|-------|-----------|---------------------------|-----------------------------------------|---------------------------------------------|------|------------------------------|------------------------------|------|------|
| Pathway | Pathway<br>E Portfolio 17 | 2030  | 80%       |                           | Drake retire                            |                                             |      | Nixon 1 retire               | Birdsall retire              |      |      |
| E       |                           | 2050  | 90%       |                           | Small, mobile, natural<br>gas generator |                                             |      | Non-carbon, storage<br>& DSM | Non-carbon, storage<br>& DSM |      |      |
| Gas     | G-E17                     |       |           | LDC IT with<br>oil backup |                                         | Expand/new<br>pipeline capacity<br>with NNT |      |                              |                              |      |      |

Overview

- Carbon reduction goals: 80% by 2030, 90% by 2050
- Coal retirement: Drake Power Plant no later than 2023, Nixon Power Plant no later than 2030
- · Other retirement: Birdsall Power Plant no later than 2035
- Replacement: Small, mobile natural gas generators, non-carbon generation and storage plus energy efficiency initiatives

| Path | nway          | Portfolio    | Carbon targets | 2022                      | 2023                                    | 2025                                        | 2026 | 2030                         | 2035                         | 2040 | 2050 |
|------|---------------|--------------|----------------|---------------------------|-----------------------------------------|---------------------------------------------|------|------------------------------|------------------------------|------|------|
| Path | nway          | D            | 2030 80%       |                           | Drake retire                            |                                             |      | Nixon 1 retire               | Birdsall retire              |      |      |
| E    | E Portfolio 1 | Portfolio 1/ | 2050 90%       |                           | Small, mobile, natural<br>gas generator |                                             |      | Non-carbon, storage<br>& DSM | Non-carbon, storage<br>& DSM |      |      |
| G    | as            | G-E17        |                | LDC IT with<br>oil backup |                                         | Expand/new<br>pipeline capacity<br>with NNT |      |                              |                              |      |      |

Besource Chang







Attribute rank

**Financial rank** 

| 2024 2050 /                                                                                    |                                                    |                                                                                | ncs                                                                    | Attribute Score                                                                                                                                                                                                                                                                                                |                                                  |  |  |
|------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|
| 2021-2050 (P                                                                                   | 200                                                | 30 Year Revenue                                                                | \$36.47B                                                               | Reliability                                                                                                                                                                                                                                                                                                    | 100                                              |  |  |
| Drake (2023)                                                                                   | -208                                               | Requirement                                                                    |                                                                        | Cost/                                                                                                                                                                                                                                                                                                          | 46                                               |  |  |
| Nixon 1 (2030)                                                                                 | -207                                               | Average Annual Revenue                                                         | \$1.22B                                                                | Environment/                                                                                                                                                                                                                                                                                                   |                                                  |  |  |
| Nixon 2-3                                                                                      | 0                                                  | Average Adjusted Debt                                                          |                                                                        | Stewardship                                                                                                                                                                                                                                                                                                    | 69                                               |  |  |
| Birdsall (2035)                                                                                | -54                                                | Service Coverage                                                               | 1.85                                                                   | Flexibility/<br>Diversity                                                                                                                                                                                                                                                                                      | 88                                               |  |  |
| Front Range                                                                                    | 0                                                  | Average Adjusted Days<br>Cash on Hand                                          | 154                                                                    | Innovation                                                                                                                                                                                                                                                                                                     | 70                                               |  |  |
| New Gas                                                                                        | 156                                                | 30 Year Electric Revenue                                                       | \$18.21B                                                               | Total score<br>(normalized)                                                                                                                                                                                                                                                                                    | 100                                              |  |  |
| DSM                                                                                            | 76                                                 | Sensitivities (\$ incr                                                         | emental)                                                               | Risks                                                                                                                                                                                                                                                                                                          |                                                  |  |  |
|                                                                                                |                                                    |                                                                                |                                                                        |                                                                                                                                                                                                                                                                                                                |                                                  |  |  |
| Storage                                                                                        | 417                                                | Social Cost                                                                    | \$0.97B                                                                | <ul> <li>Tight on capacity<br/>with early Drake</li> </ul>                                                                                                                                                                                                                                                     | y                                                |  |  |
| Storage<br>Solar                                                                               | 417<br>150                                         | Social Cost<br>High Load                                                       | \$0.97B<br>\$330M                                                      | <ul> <li>Tight on capacity<br/>with early Drake<br/>decommissionin</li> </ul>                                                                                                                                                                                                                                  | y<br>g                                           |  |  |
| Storage<br>Solar<br>Wind                                                                       | 417<br>150<br>500                                  | Social Cost<br>High Load<br>Low Load                                           | \$0.97B<br>\$330M<br>(\$317)M                                          | <ul> <li>Tight on capacit<br/>with early Drake<br/>decommissionin</li> <li>Electrification wi<br/>provide a challer</li> </ul>                                                                                                                                                                                 | y<br>g<br>II<br>nge                              |  |  |
| Solar<br>Solar<br>Wind<br>Hydro                                                                | 417<br>150<br>500<br>0                             | Social Cost<br>High Load<br>Low Load<br>High Gas                               | \$0.97B<br>\$330M<br>(\$317)M<br>\$458M                                | <ul> <li>Tight on capacity<br/>with early Drake<br/>decommissionin</li> <li>Electrification wi<br/>provide a challen<br/>in serving increation<br/>load while reduction</li> </ul>                                                                                                                             | y<br>g<br>II<br>nge<br>ised<br>ised              |  |  |
| Solar<br>Solar<br>Wind<br>Hydro<br>Geothermal                                                  | 417<br>150<br>500<br>0<br>10                       | Social Cost<br>High Load<br>Low Load<br>High Gas<br>Low Gas                    | \$0.97B<br>\$330M<br>(\$317)M<br>\$458M<br>(\$491)M                    | <ul> <li>Tight on capacity<br/>with early Drake<br/>decommissionin</li> <li>Electrification wi<br/>provide a challer<br/>in serving increation<br/>load while reduct<br/>GHG emissions</li> </ul>                                                                                                              | y<br>g<br>II<br>nge<br>ised<br>ing               |  |  |
| Solar<br>Solar<br>Wind<br>Hydro<br>Geothermal<br>Biomass/ Biogas                               | 417<br>150<br>500<br>0<br>10<br>10                 | Social Cost<br>High Load<br>Low Load<br>High Gas<br>Low Gas<br>90x30           | \$0.97B<br>\$330M<br>(\$317)M<br>\$458M<br>(\$491)M<br>\$98M           | <ul> <li>Tight on capacity<br/>with early Drake<br/>decommissionin</li> <li>Electrification with<br/>provide a challer<br/>in serving increation<br/>load while reduct<br/>GHG emissions</li> <li>Future regulatory<br/>(ex. 100%)</li> </ul>                                                                  | y<br>g<br>II<br>nge<br>ised<br>ing<br>y risk     |  |  |
| Storage<br>Solar<br>Wind<br>Hydro<br>Geothermal<br>Biomass/ Biogas<br>Carbon Capture           | 417<br>150<br>500<br>0<br>10<br>10<br>0            | Social Cost<br>High Load<br>Low Load<br>High Gas<br>Low Gas<br>90x30<br>100x50 | \$0.97B<br>\$330M<br>(\$317)M<br>\$458M<br>(\$491)M<br>\$98M<br>\$100M | <ul> <li>Tight on capacity<br/>with early Drake<br/>decommissionin</li> <li>Electrification wi<br/>provide a challen<br/>in serving increat<br/>load while reduct<br/>GHG emissions</li> <li>Future regulatory<br/>(ex. 100%<br/>renewables)</li> <li>Transmission im</li> </ul>                               | y<br>g<br>III<br>nge<br>ised<br>ing<br>y risk    |  |  |
| Storage<br>Solar<br>Wind<br>Hydro<br>Geothermal<br>Biomass/Biogas<br>Carbon Capture<br>Nuclear | 417<br>150<br>500<br>0<br>10<br>10<br>10<br>0<br>0 | Social Cost<br>High Load<br>Low Load<br>High Gas<br>Low Gas<br>90x30<br>100x50 | \$0.97B<br>\$330M<br>(\$317)M<br>\$458M<br>(\$491)M<br>\$98M<br>\$100M | <ul> <li>Tight on capacity<br/>with early Drake<br/>decommissionin</li> <li>Electrification with<br/>provide a challer<br/>in serving increation<br/>load while reduct<br/>GHG emissions</li> <li>Future regulatory<br/>(ex. 100%<br/>renewables)</li> <li>Transmission im<br/>limitations for with</li> </ul> | y<br>nge<br>ised<br>ing<br>y risk<br>iport<br>nd |  |  |

#### **EIRP PORTFOLIO 17**

#### **EIRP PORTFOLIO 16**

| P | athway         | Portfolio               | Carbon targets | 2022                                    | 2023         | 2025                                        | 2026                          | 2030                                        | 2035            | 2040 | 2050 |
|---|----------------|-------------------------|----------------|-----------------------------------------|--------------|---------------------------------------------|-------------------------------|---------------------------------------------|-----------------|------|------|
| P | athway         | thway<br>F Portfolio 16 | 2030 80%       |                                         | Drake retire |                                             |                               | Nixon 1 retire                              | Birdsall retire |      |      |
|   | E Portfolio 16 | 2050 90%                |                | Small, mobile, natural<br>gas generator |              |                                             | Gas/renewable/<br>storage/DSM | Gas/renewable/<br>Storage/DSM               |                 |      |      |
|   | Gas            | G-E16                   |                | LDC IT with oil<br>backup               |              | Expand/new<br>pipeline capacity<br>with NNT |                               | Expand/new<br>pipeline capacity<br>with NNT |                 |      |      |

#### **EIRP PORTFOLIO 17**

| Pathway | Portfolio    | Carbon targets | 2022                      | 2023                                    | 2025                                        | 2026 | 2030                         | 2035                         | 2040 | 2050 |
|---------|--------------|----------------|---------------------------|-----------------------------------------|---------------------------------------------|------|------------------------------|------------------------------|------|------|
| Pathway | 5            | 2030 80%       |                           | Drake retire                            |                                             |      | Nixon 1 retire               | Birdsall retire              |      |      |
| E       | Portfolio 17 | 2050 90%       | 2                         | Small, mobile, natural<br>gas generator |                                             |      | Non-carbon, storage<br>& DSM | Non-carbon, storage<br>& DSM |      |      |
| Gas     | G-E17        |                | LDC IT with<br>oil backup |                                         | Expand/new<br>pipeline capacity<br>with NNT |      |                              |                              |      |      |

### Portfolios 16 and 17 Capacity and Energy



![](_page_13_Figure_2.jpeg)

![](_page_13_Figure_3.jpeg)

![](_page_14_Figure_0.jpeg)

#### New Resources Needed for Portfolio 16 and 17 in MW

**1**6 **1**7

## **IRP Goals (Phase 1)**

#### **Resilient and reliable**

- Industry leading reliability and resiliency while avoiding potential stranded assets
- Support economic growth of the region

#### **Cost-effective energy**

- Maintain competitive and affordable rates
- Further advance energy efficiency and demand response

#### **Environmentally sustainable**

- Grow renewable portfolio
- Establish timelines for decommissioning of assets

#### **Reduces our carbon footprint**

- Meet all environmental regulations with specific metrics that include reducing our carbon footprint
- Reduce reliance on fossil fuels

#### Uses proven state-of-the-art technologies

Proactively and responsibly integrate new technologies

#### to enhance our quality of life for generations to come

## **Attribute Scoring (Phase 2)**

|                      | Reliability                                                                                         | Cost /<br>Implementation                                      | Environment /<br>Stewardship                                           | Flexibility /<br>Diversity                                       | Innovation                                                                             | Total |
|----------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------|
| Weighting            | 32%                                                                                                 | 22%                                                           | 22%                                                                    | 14%                                                              | 10%                                                                                    |       |
| Criteria             | <ol> <li>Quick Ramp</li> <li>Quick Start</li> <li>Market Purchases</li> <li>Availability</li> </ol> | <ol> <li>NPVRR</li> <li>Decommission<br/>timeframe</li> </ol> | <ol> <li>GHG Reduction</li> <li>Land Use</li> <li>Water Use</li> </ol> | <ol> <li>Average Capacity</li> <li>Generation Sources</li> </ol> | <ol> <li>Demand Reduction</li> <li>State of the Art</li> <li>Technology use</li> </ol> |       |
| Portfolio 16 - Score | 1.12                                                                                                | 0.66                                                          | 0.70                                                                   | 0.42                                                             | 0.25                                                                                   | 3.15  |
| Portfolio 17 - Score | 1.20                                                                                                | 0.49                                                          | 0.66                                                                   | 0.49                                                             | 0.35                                                                                   | 3.19  |

Note: Final Score is normalized against score of all other portfolios on 100 point scale.

### Portfolio 16 and 17 Scoring Slide

| Portfolio Pathw | way CO2 Target             | Retirements                | New Resources                            | Attribute<br>Ranking | Total Score<br>Normalized | Financial<br>Ranking | Total RR | % Increase to<br>Portfolio R | % Increase to<br>Portfolio 1 |
|-----------------|----------------------------|----------------------------|------------------------------------------|----------------------|---------------------------|----------------------|----------|------------------------------|------------------------------|
| 17 E            | 80% by 2030<br>90% by 2050 | Drake 2023<br>Nixon 1 2030 | Aeroderivative/Non-Carbon/Storage/DSM    | 1                    | 100                       | 4                    | \$36.47B | 2.10%                        | -0.21%                       |
| 16 E            | 80% by 2030<br>90% by 2050 | Drake 2023<br>Nixon 1 2030 | Aeroderivative/Gas/Renewable/Storage/DSM | 2                    | 98.7                      | 1                    | \$36.27B | 1.53%                        | -0.76%                       |

Note: Total RR is total revenue requirement for all 4 services for 30 years in billions of dollars. It represents total cost to run Colorado Springs Utilities.

### Portfolio 16 & 17 Financial Results (30 year)

![](_page_18_Figure_1.jpeg)

Revenue numbers are for 30 years.

### Portfolio 16 & 17 Financial Results (10 year)

![](_page_19_Figure_1.jpeg)

![](_page_19_Figure_2.jpeg)

Revenue numbers are for 10 years.

# **Summary Comparison - Similarities**

#### Portfolio 16:

- 2nd highest Attribute ranking (Phase 2)
- Meets state regulatory carbon reduction
- Solid financial results (within margin of error)
- Reasonable risk profile
- Earliest Drake decommissioning (NLT 2023) with gas aeroderivative replacement
- Provides flexibility on Nixon 1 replacement
- Aligned with community input (early decommissioning)
- Aligned with IRP Goals
- Aligned with GIRP Portfolio 6

#### Portfolio 17:

- Highest scoring portfolio on attributes (Phase 2)
- Meets state regulatory carbon reduction
- Solid financial results (within margin of error)
- Reasonable risk profile
- Earliest Drake decommissioning (NLT 2023) with gas aeroderivative replacement
- Provides flexibility on Nixon 1 replacement
- Aligned with community input (early decommissioning)
- Aligned with IRP Goals
- Aligned with GIRP Portfolio 6

## **Summary Comparison - Differences**

#### Portfolio 16:

 Relies on gas resources and demand side management to replace Nixon 1 capacity

#### Portfolio 17:

- Relies on wind, energy storage and demand side management to replace Nixon 1 capacity
- Less dependence on spot market purchases to serve load and reduce carbon footprint

### **Utilities' Recommendation- Portfolio 17**

#### **EIRP PORTFOLIO 17**

| Pathway | Portfolio    | Carbon targets | 2022                      | 2023                                    | 2025                                        | 2025 2026 |                              | 2035                         | 2040 | 2050 |
|---------|--------------|----------------|---------------------------|-----------------------------------------|---------------------------------------------|-----------|------------------------------|------------------------------|------|------|
| Pathway | Portfolio 17 | 2030 80%       |                           | Drake retire                            |                                             |           | Nixon 1 retire               | Birdsall retire              |      |      |
| E       |              | 2050 90%       |                           | Small, mobile, natural<br>gas generator |                                             |           | Non-carbon, storage<br>& DSM | Non-carbon, storage<br>& DSM |      |      |
| Gas     | G-E17        |                | LDC IT with<br>oil backup |                                         | Expand/new<br>pipeline capacity<br>with NNT |           |                              |                              |      |      |

#### Reasons for Utilities' recommendation of Portfolio 17:

- Enhanced reliability and resilience
- Investment in infrastructure to support renewables and advanced technologies
- Supports vision of advancing renewable energy and future technologies (e.g. microgrids, storage, electric vehicles, AMI, distributed resources, etc.)
- Will promote innovation, utility transformation and agility
- Use gas resources for Nixon replacement only as a contingency/back up plan

![](_page_22_Figure_9.jpeg)

![](_page_23_Picture_0.jpeg)

# **Customer Comment**

![](_page_24_Picture_0.jpeg)

# **Board Discussion and Decision**

![](_page_25_Picture_0.jpeg)

# **Supplemental Information**

Colorado Springs Utilities

# **Public Comment Summary – June 17**

Ft. Carson and Army Office of Energy Initiatives

- Resiliency is the most important aspect of their energy service.
- Colorado Springs Utilities has involved them in the IRP process and provides resilient power at Fort Carson.
- Army installations must have access to energy to assure readiness.
- Energy infrastructure is a key facet of resilience importance and the Army is willing to partner with Colorado Springs Utilities in siting key energy infrastructure that establish longer duration and larger scale backup resources.

#### Sierra Club Beyond Coal

- Applauds early coal retirement and the promise that no Utilities employees will lose their job.
- Sees the need to invest in new energy sources, but prefers renewable resources to fossil fuel due to environmental impacts.
- New natural gas plants will cost more money with significant regulatory risk.
- Supports Portfolio 17.

# **Public Comment Summary – June 17**

Penrose/St. Francis

- Penrose/St. Francis partners with Colorado Springs Utilities at both campuses.
- They rely on resilience and enhanced power at St. Francis, and look forward to planning programs with Interquest campus, and the possibility of a solar farm there.
- Appreciative of rebate programs.

**Downtown Partnership** 

- Downtown Partnership were engaged and participated in the IRP, and appreciates strong business community involvement.
- Pleased with both portfolios and supporting portfolio 17, as it gives an edge with wind and battery for a clean energy future, new investment to downtown, and opportunity to have a bold clean energy commitment.
- Supports swift plan for decommissioning Drake Power Plant, which will attract businesses looking for this commitment.

## **Public Comment Summary – June 17**

Chamber of Commerce & EDC

- Agrees with the five attributes used to evaluate portfolios.
- The Chamber & EDC has participated, and presented to UPAC, appreciate adjustments made, and endorsed the process conducted with robust public outreach.
- Sees Drake redevelopment and future of the plant as a gateway and opportunity for revitalization downtown.

Public Comments

- Nineteen Speakers supported Portfolio 17 over Portfolio 16.
- Two speakers supported Portfolio 10, one speaker supported Portfolio 16.
- Preference for renewable resources vs. fossil fuels as replacement for Drake and Nixon.

### **Revenue Requirement Comparison**

![](_page_30_Figure_1.jpeg)

![](_page_30_Figure_2.jpeg)

### **Electric Revenue – Base and Fuel**

![](_page_31_Figure_1.jpeg)

### EIRP Sensitivity Social Cost of Carbon

- All portfolios are more costly
- Accelerates CO2 reduction by backing down coal and gas generation
- Requires substantial increase in carbon free or renewable energy
- Gas resources built to meet capacity requirements but do not run much

#### Social Cost of Carbon

![](_page_32_Figure_6.jpeg)

Incremental net present value revenue requirement over 30 years. Numbers are in millions of dollars. Black numbers indicate increase.

### EIRP Sensitivity Gas Price

- Both gas and renewable portfolios are impacted due to cost of market purchases
- Low gas prices help all portfolios
- High gas prices hurt all portfolios

![](_page_33_Figure_4.jpeg)

Incremental net present value revenue requirement over 30 years. Numbers are in millions of dollars. Green numbers indicate decrease in revenue requirement. Black numbers indicate increase.

### EIRP Sensitivity Carbon reduction

- All portfolios are more costly
- Increased reliance on energy market
- Model still builds gas generation as bridge allowing for cost of renewables to continue to decline
- Current transmission infrastructure not sufficient to achieve 100% renewable energy
- A lot of excess energy and hours of curtailment, and a significant amount of energy storage and DSM needed
- Portfolios 10 and 11 already meet 100% by 2050 target

![](_page_34_Figure_7.jpeg)

Incremental net present value revenue requirement over 30 years. Numbers are in millions of dollars. Black numbers indicate increase.

### EIRP Sensitivity Load Forecast

- High load represents potential annexation and electrification scenarios
- Electrification will increase electric revenue requirement but decrease gas revenue requirement
- High load increases total revenue requirement
- Low load decreases total revenue requirement

![](_page_35_Figure_5.jpeg)

Incremental net present value revenue requirement over 30 years. Numbers are in millions of dollars. Green numbers indicate decrease in revenue requirement. Black numbers indicate increase.

### **EIRP Sensitivity** Drake retired no later than 2022

- Only possible in portfolios 12, 16 and 17
- Additional capacity is needed sooner
- Can lower costs even more depending on new capacity resource

![](_page_36_Figure_4.jpeg)

Incremental net present value revenue requirement over 30 years. Numbers are in millions of dollars. Green numbers indicate decrease in revenue requirement. Black numbers indicate increase.

### **Portfolios 16 and 17 New Resources**

![](_page_37_Figure_1.jpeg)

### **DSM Resources by Portfolio**

![](_page_38_Figure_1.jpeg)

Colorado Springs Utilities

### **Renewable Resources by Portfolio**

![](_page_39_Figure_1.jpeg)

### **Energy Storage Resources by Portfolio**

![](_page_40_Figure_1.jpeg)

Colorado Springs Utilities

### **Gas Resources by Portfolio**

![](_page_41_Figure_1.jpeg)

Colorado Springs Utilities

![](_page_42_Figure_1.jpeg)

Portfolio 16 Gas Portfolio 17 Gas

![](_page_43_Figure_0.jpeg)

![](_page_44_Figure_0.jpeg)

![](_page_45_Figure_0.jpeg)

### **Unit Generation**

![](_page_46_Figure_1.jpeg)

Colorado Springs Utilities

### **Market Purchases**

![](_page_47_Figure_1.jpeg)

Colorado Springs Utilities

### **100% Renewable Portfolios**

| Portfolio | CO2 Target   | Retirements                          | New Resources         | Attribute<br>Ranking | Total Score<br>Normalized | Reliability | Cost /<br>Implementation | Environment<br>/ Stewardship | Flexibility<br>/ Diversity | Innovation |
|-----------|--------------|--------------------------------------|-----------------------|----------------------|---------------------------|-------------|--------------------------|------------------------------|----------------------------|------------|
| 15        | 100% by 2030 | Drake/Nixon/Front Range 2030         | Renewable/Storage/DSM | 8                    | 82.8                      | 73          | 24                       | 100                          | 50                         | 60         |
| 18        | 100% by 2040 | Drake 2035<br>Nixon/Front Range 2040 | Renewable/Storage/DSM | 10                   | 74.2                      | 80          | 34                       | 53                           | 50                         | 60         |
| 19        | 100% by 2050 | Drake 2035<br>Nixon/Front Range 2050 | Renewable/Storage/DSM | 12                   | 67.3                      | 73          | 44                       | 38                           | 63                         | 30         |

### **Energy Vision**

Provide resilient, reliable and cost-effective energy that is environmentally sustainable, reduces our carbon footprint and uses proven state-of-the-art technologies to enhance our quality of life for generations to come.

#### STRATEGIC PILLARS TO SUPPORT THE NEW ENERGY VISION

![](_page_49_Figure_3.jpeg)

### THE FUTURE OF OUR ENERGY SYSTEM

As we decommission fossil fuel generation and integrate more renewables, it is essential that we maintain a safe, reliable, and cost-effective energy supply. Here's how we'll do it.

![](_page_50_Figure_2.jpeg)

- 1 TODAY, WE HAVE ABOUT 1,000 MEGAWATTS OF FOSSIL FUEL ELECTRIC GENERATION. IN THE COMING YEARS, WE WILL DECOMMISSION MORE THAN A QUARTER OF IT.
- 2 THE COMMUNITY INCORPORATES SMART TECHNOLOGY (INCLUDING SOLAR PANELS, STORAGE SYSTEMS, AND ELECTRIC VEHICLES) IN THEIR HOMES AND BUSINESSES AND PARTICIPATES IN ENERGY EFFICIENCY, REDUCING THE AMOUNT OF NEEDED REPLACEMENT GENERATION.
- 3 OUR COMMUNITY AND ENVIRONMENT BENEFIT FROM UTILITY-SCALE SOLAR AND STORAGE PROJECTS (GROWING CARBON-FREE GENERATION TO MORE THAN 260 MEGAWATTS BY 2023).
- 4 MINIMAL AMOUNTS OF NATURAL GAS GENERATION CAN BE OUR BRIDGE TO NEW TECHNOLOGIES.

![](_page_50_Picture_7.jpeg)

### **Youth Input**

# DO YOU HAVE A POSITIVE OR NEGATIVE OPINION OF THE FOLLOWING ENERGY SOURCES?

#### # OF POSITIVE OPINIONS OF EACH ENERGY SOURCE

![](_page_51_Figure_3.jpeg)

### # OF NEGATIVE OPINIONS OF EACH ENERGY SOURCE

![](_page_51_Figure_5.jpeg)

![](_page_52_Figure_0.jpeg)